
 STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

DOI:10.5937/StraMan1902011D

Received: December 12, 2018

Accepted: March 15, 2019

Agile architecture in the digital era -
trends and practices

Zoran Dragičević
Company Boksit, Milići, Republic of Srpska, Bosnia and Herzegovina

Saša Bošnjak
University of Novi Sad, Faculty of Economics in Subotica, Subotica, Serbia

Abstract
The speed of response to change and fluidity are key preconditions for the next generation of IT solutions in
the digital world. We are witnessing a rather unimaginable expansion of the use of technology in everyday life,
on the one hand, and a continuous increase in the speed of software delivery, on the other, which significantly
increased expectations and contributed to the adoption of agile methods and practices, shifting the pendulum
of software architecture from traditional to agile methods and practices. Agile architecture, as a result of the
transformation of a traditional and agile approach to software development, is a new approach that uses agile
techniques to deliver a flexible architecture, adaptable to changing demands, tolerant to changes, which is the
result of the iterative-incremental design of the agile process of software development. In recent years, there
has been a shift in focus, in practice and research, from people and processes to integration technologies and
application's hosting, which has led to the emergence of microservices and increased interest in software
architecture and design. One consequence of this is the emergence and development of new approaches in
the process of building Agile architecture, such as Continuous Architecting, Lean Architecting or Evolutionary
Architecting, which essentially share the same goals. In this connection, in order to understand better the
concept and the new role of Agile architecture in the digital era, it is necessary to study the genesis of Agile
architecture, as a special approach in software development, to identify current trends and practices that are
adapted to the contemporary digital environment (scalability, distribution, complexity). The results of
conducted systematic literature review will help researchers and practitioners in better understanding of what
Agile architecture is and its role, the current trends and directions of future development, and practices that
are particularly useful in the development of complex software, with the aim of broadening the application and
improvement of the agile software development process.

Keywords
agile architecture, trends, challenges, success factors, practices, software development

Introduction
The World Economic Forum (WEF) and
Accenture launched the Digital Transformation
Initiative in 2015 to explore the impact of
digitalization on business and society. The results
released in 2017 predict that the digital
transformation will bring a value of $ 100 trillion
in the next decade.

Getting cheaper and better technologies, such
as mobile, cloud, sensors, analytics and IoT
(Internet of Things), with the ability to combine in
innovative ways, exponentially accelerate

progress. Technology becomes a multiplier in the
digital era (WEF & Accenture, 2017) (Figure 1).

The expansion of the technology is
accompanied by a continuous increase in the
speed of software delivery, which has greatly
increased expectations and contributed to the
adoption of agile methods and practices. The
pillars of software architecture have shifted from
traditional to modern methods and practices
(Erder & Pureur, 2016), while the speed of
response to change and fluidity are key
preconditions for the next generation of IT
solutions in the digital world (Gartner, 2014).

Dragičević et al. Agile architecture in the digital era – trends and practices 13

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

Figure 1 Expansion of technologies in the digital era
Source: WEF & Accenture, 2017.

Agile architecture, as a point of consensus on

the process and structure (Kruchten, 2013), is an
approach that uses agile techniques to deliver
good architecture (Madison, 2010). Kruchten
(2013) considers agile architecture as two-
dimensional (1) as a software architecture that is
versatile, evolving and easily changing, flexible
and at the same time resistant to change, and (2)
as an agile way to define architecture by an
iterative approach, allowing gradual the evolution
of architectural design in step with a better
understanding of problems and constraints.

Waterman, Noble and Allan (2015) under the
term agile architecture mean "an architecture that
satisfies the definition of agility by being able to
be easily modified in response to changing
requirements, is tolerant of change, and is
incrementally and iteratively designed – the
product of an agile development process", where
agility is "the team's ability to create change,
respond to change and learn from change so that
it can better deliver value".

With the support of modern practices,
technology and tools, the division between the
development and production environment is
increasingly being blurred, creating a combined
ecosystem (Bellomo, Ernst, Nord & Kazman,
2014), so, in the digital age, agile architecture
extends to a complete combined ecosystem, which
has been particularly influenced by new
approaches: Continuous (Erder & Pureur, 2015),
Lean (Coplien & Bjørnvig, 2010) and
Evolutionary (Ford, Parsons & Kua, 2017)
architecture, which add new practices, but
essentially share the same goals (Booch, 2010;
Holmes & Nicolaescu, 2017).

Through the application of continuous
practices, especially continuous delivery, there is
a change in focus, in practice and research, from

people and processes to integration technologies
and application hosting (RESTfull HTTP, cloud
computing, DevOps) (Zimmermann, 2016b),
which led to the emergence of microservices
(Fowler & Lewis, 2014; Newman, 2015) and
increased interest in software architecture and
design, so that discussion of quality attributes
such as scalability, performance, etc. or the
discussion of the application of architectural
patterns and frameworks, is no longer seen as the
BDUF or YAGNI (Zimmermann, 2016b).

Microservices are becoming a key link in the
advancement chain that (r)evolutionarily alters the
process of software development and delivery
(Richardson & Smith, 2016), while new issues
arise in the development of complex distributed
systems. The digital era brings new challenges
that require an innovative approach to finding
optimal solutions bearing in mind the wider,
combined ecosystem. In this regard, it is
necessary to examine in detail current trends and
practices of agile architecture in the digital era.
Based on the available information there is no
study that systematically investigates trends and
practices of agile architecture in the digital era.

The rest of this paper is as follows: Section 2
describes the applied methodology, Section 3
presents the results related to the trends and
practices of agile architecture in the digital era,
Section 4 discusses general considerations,
provides answers to research questions, compares
similar research, lists identified contradictory
attitudes, determines possibilities for further
research and constraints. The final part of the
paper contains conclusions.

2. Methodology
Research into the trends and practices of agile
architecture in the digital era is based on the
Systematic Literature Review (SLR) method and
the guidelines provided by Kitchenham (2007).
SLR is a method for the realization of secondary
studies on the results collected from primary
studies. SLR protocol was used to define: research
question, search process, inclusion/exclusion
criteria, quality assessment, method of data
collection and analysis. The goal of the research is
to answer the following research questions (RQ):

RQ1: What are the current trends in Agile
architecture, bearing in mind the emergence of
different approaches: Continuous, Lean and
Evolutionary, in software engineering?

14 Dragičević et al. Agile architecture in the digital era – trends and practices

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

RQ2: What are the practices of developing and
implementing Agile architecture in a modern
digital environment?
The search process strategy involved search
queries, datasets over which a query and data
sources that would be used to identify primary
candidate studies (Kitchenham, 2004). Based on
research questions, a search query was defined as:
(agile OR lean OR evolutionary OR continuous)
AND (architecture OR architecting) AND
software AND development.

In order to increase the probability of finding
the desired primary studies, the query was
performed on the following datasets: Title and
Abstract. The literature search was carried out by
combining automatic and manual searches. The
automatic search includes four electronic
databases: IEEE Xplore, ACM, ArXiv and Google
Schoolar, in order to select high quality, reviewed
publications in journals and conferences, as well
as other publications relevant to the subject of
research and research questions.

For each database, based on research
questions, a search query is specifically adapted,
e.g. for Google Schoolar customized query was:
"agile architecture" OR "continuous architecture"
OR "lean architecture" OR "evolutionary
software architecture". A manual search was
carried out using the so-called snowballing (Jalali
& Wohlin, 2012), i.e. iterative searches and
finding relevant publications based on references
identified in primary publications (backward
snowballing), as well as publications where
primary publications are referenced (forward
snowballing) (Webster & Watson, 2002).

The inclusion and exclusion criteria were used
to assess the suitability of the content of each
primary study in relation to the research questions
raised (Kitchenham, 2004). The inclusion and
exclusion criteria are given in Table 1.

The results of the process of selection of
primary studies are presented in Table 2. The
selected publications have passed the quality
assessment. The quality assessment criteria are
defined in the light of the recommendations of
Kitchenham (2007) and Dybå and Dingsøyr
(2008).

To make an assessment, each publication was
subjected to a set of questions that tested the
quality of the publication as a whole, the quality,
and significance of results and conclusions, as
well as the relevance and contribution to the
expansion of knowledge and a better
understanding of agile architecture. For extraction

and qualitative data analysis, the thematic analysis
technique and the Atlas.ti software tool was used.
The statistics of the selection process regarding
the number of primary studies by type of sources
and years are shown in Figures 2 and 3.

Table 1 The inclusion and exclusion criteria

Criteria Assessment Criteria
Include Publications that define or discuss Agile,

Continuous, Lean or Evolutionary Architecture
Include Publications from journals, conferences,

workshop sessions, book chapters, or
websites/blogs.

Include English-language publications, published in
the time interval from 2001 to 2017.

Exclude Publications which are clear that they are not
related to the Agile, Continuous, Lean or
Evolutionary software development
architecture.

Exclude Publications that just mention the terms Agile,
Continuous, Lean or Evolutionary architecture
in software development.

Exclude Non-primary publications (e.g. Systematic
Literature Reviews).

Source: Authors

Table 2 Results of the process of selection

Criteria
of articles

IEEE
Xplore

ACM ArXiv
Google

Schoolar
After search
using query

418 1022 50 145

Selected on title
& abstract

47 32 6 25

After removal of
duplicates

47 29 6 18

After quality
assessment

37 7 1 11

Added by
snowballing

5

Total 61

Source: Authors

Figure 2 Number of primary studies by type of source
Source: Authors

Figure 3 Number of primary studies per year
Source: Authors

Dragičević et al. Agile architecture in the digital era – trends and practices 15

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

3. Results
In this section the results of the research, firstly
the trends of the challenges and success factors of
agile architecture in the digital era, and then the
identified practices, are presented.

3.1. Trends of agile architecture in the digital
era
In order to get an answer to the RQ1: What are
the current trends in Agile architecture, bearing
in mind the emergence of different approaches:
Continuous, Lean and Evolutionary, in software
engineering?, the trends of challenges and success
factors have been identified and presented by
analyzing selected publications.

3.1.1. The challenges of agile architecture in the
digital era

Ten key challenges have been identified, which
are associated with several different sources
(Table 3).

Balancing agility and architecture
Leffingwell, Martens and Zamora (2008) doubt
the raising of emergent architecture by
refactoring, in the context of the scaled agile
process of development and highlight the dangers
of over-focusing on urgency (tyranny of the
urgent). Kruchten (2010) and Abrahamsson,
Babar and Kruchten (2010) emphasize the tension
between adaptation and anticipation, and the risk
of accumulating technical debt as a consequence
of an insufficient focus on architecture, while
Madison (2010) emphasizes the need to balance
business and architectural priorities. For Blair,
Watt and Cull (2010), the challenge is to identify

the right moment for making key decisions, in
order to balance emergent and Up-Front design.
The issue of improving architectural design in
agile methods is being raised (Prause & Durdik,
2012), as well as the issue of optimization of
architectural increment in order to achieve the
balance of the price of delay of decisions and
price of corrections, i.e. refactoring (Nord,
Ozkaya & Sangwan, 2012). Waterman, Noble and
Allan (2012) explores the design of a minimal up-
front architecture, while Fontdevila and Salías
(2013) ask the question how to use agile approach
and software architecture to increase quality,
direct the development process and continuously
flow the value for users.

Ozkaya, Gagliardi and Nord (2013)
emphasizes importance of integrating agile and
architectural principles in order to improve the
visibility of project status and to improve risk
management tactics when scaling volume, team
and/or time. In the context of the increasing

importance and wide use of Continuous Delivery
(CD), it is particularly important to design
architecture for CD (Bellomo et al., 2014).

In the digital era, the pressure is increased for
rapid delivery of value (Erder & Pureur, 2016),
while maintaining the speed of project realization
and product stability (Bellomo, Nord & Ozkaya,
2013), with architecture playing a major role in
value streams delivery (Power & Conboy, 2015).

Waterman et al. (2015) puts a focus on the
choice of an optimal strategy for the
implementation of agile architecture, depending
on the degree of influence of different driving
forces in a given context. Martini and Bosch
(2016) emphasize the challenge of continuous

Table 3 The challenges of agile architecture in the digital era

Challenge 2001-2010 2011-2014 2015-2017
Balancing agility and architecture S04 S12 S14 S15 S16 S21 S23 S26 S28 S29 S38 S39 S41 S44 S53 S57
Preserving the conceptual integrity and
consistency of architecture

 S20 S22 S28 S30 S50

Architecture documentation S03 S09 S18 S30 S42 S47
Scaling S01 S04 S06 S07 S10 S29 S32 S45 S49 S59 S60
Interdependence of components S06 S31 S34 S44 S51
Interdependence of requirements S08 S23 S30 S23 S30
Product life cycle management -
optimization of the process and flow of
values

S10 S22 S23 S27 S31 S41

Organization, communication and
coordination

S06 S07 S28 S29 S31 S32 S35 S42 S45 S47 S49 S53

Application of microservice architecture S45 S46 S52 S54 S57
S58 S59 S60 S61

New business models of digital economy S27 S56

Source: Authors

16 Dragičević et al. Agile architecture in the digital era – trends and practices

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

focus on architecture in order to eliminate
technical debt and prevent erosion of architecture
because the accumulated technical debt and the
degree of refactoring are directly proportional to
the misconception about actual architecture
(Holmes & Nicolaescu, 2017).
Preserving the conceptual integrity and
consistency of architecture
Miyachi (2011) raises the issue of long-term
architectural maintenance efficiency, bearing in
mind the exponential increase in the cost of
correcting errors by the flow of time, especially
after the delivery of the software.

Hayata, Han and Beheshti (2012) explores the
possibilities of combining lean architecture with
agile software development, and the application of
lean thinking to preserve the integrity of the
architecture. There is a need for a strong focus on
preserving conceptual integrity through the
planning of regular meetings between top-level
design teams (Fontdevila & Salias, 2013), as well
as through constant checking of design
compliance with architecture (Mirakhorli &
Cleland-Huang, 2013).

In the digital era, the importance of long-term
preservation of architectural integrity is
emphasized, so Erder and Pureur (2016) define an
architect as one "allowing the implementation of
software products by directing architectural
decisions in a way to protect the conceptual
integrity of products".
Architecture documentation
In order to reduce dependence on undocumented,
“tribal memory” and preserve intellectual
property, Booch (2007; 2010) emphasizes the
need for socialization of architecture, whereby it
is crucial to find the right measure and method of
documenting depending on the complexity of the
system. Erdogmus (2009) emphasizes the
importance of architecture visibility for making
effective decisions, and a particular challenge to
documented knowledge is its practical
application, as well as the relevance of
documentation that is not automatically generated
(Mirakhorli & Cleland-Huang, 2013).

In the digital era, the days of presenting
architecture with a set of documents are counted,
but the architecture is represented by a code
executed on the physical infrastructure of the user,
the so-called “realized architecture” (Erder &
Pureur, 2016). Woods (2015) claims that in
connection with documentation of architecture,
the real challenge is to answer the question “Who

will read it?”, while Gerdes et al. (2016) puts the
focus of a challenge of minimal documentation of
architecture in order to prevent its erosion, with
the requirements: preserve architectural
knowledge, improve communication, streamline
implementation and support architecture
assessment.
Scaling
The intense development of software companies
brought challenges to scaling the size of the team
(Ambler, 2002; Leffingwell et al., 2008; Moore &
Spens, 2008), with a particular problem finding
the right people with the desired behavior in large
distributed teams (Moore & Spens, 2008).
Experience shows that scaling brings challenges
in terms of consistency of data and an increase in
the number of errors in the race for reaching
deadlines (Isham, 2008). Ambler (2009) puts a
special focus on the challenge of effectively
managing the agile software development process
for scaling. Ozkaya et al. (2013) recognizes the
challenges associated with three scaling
perspectives: the scope, development team and
time, while Eckstein (2014) emphasizes the
influence of complexity parameters: the degree of
change and degree of uncertainty.

In the digital era, one of the major challenges
is the scaling of monolithic applications
(Villamizar et al., 2015; Taibi, Lenarduzzi, Pahl &
Janes, 2017), which often contain a large number
of functionality/services, of which a small number
requires scaling, causing unnecessary engagement
of resources. Scaling also has significant
challenges in team organization, communication
and collaboration, the role and responsibility of
the architect (Britto, Šhmite & Damm, 2016). At
the extreme level, scaling brings the greatest
challenges that require the use of reactive models
for fast response, exceptional elasticity, resistance
to failure and asynchronous communication
(Pautasso, Zimmermann, Amundsen, Lewis &
Josuttis, 2017b).
Interdependence of components
The interdependence of components, including
components belonging to a third party (Bellomo,
Kruchten, Nord & Ozkaya 2014; Waterman et al.,
2015) is a significant challenge that requires
increased effort, focus and time (Moore & Spens,
2008), complicates understanding, increases
delivery time, and discourages developers to test,
implement, and experiment (Buschmann &
Henney, 2013).

Dragičević et al. Agile architecture in the digital era – trends and practices 17

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

This challenge is growing in modern complex
development and production environment, where
systems of systems or software ecosystems are
formed, with a multitude of interdependencies
between commercial and dedicated software,
hardware platforms and organizational entities,
each of which has its own evolutionary cycle
(Poort, 2016).
Interdependence of requirements
Critical interdependencies in user requirements
can lead to significant refactoring with the
consequences of the entire structure of the
software (Babar, 2009). The hidden
interdependencies of the requirements lead to
increasing the interdependence of the components
(modules) in the design, which further create ad-
hoc communication flows between different
teams, where teams come to the end of waiting for
the completion of the work of other teams or to
duplicate the work, causing such conflicts and
aggravating management which can ultimately
lead to the suspension of the project (Nord et al.,
2012). For some extremely complex systems, it is
not far from the truth that "everything affects
everything", and especially the interdependence
between functional and non-functional
requirements (Mirakhorli & Cleland-Huang,
2013). Poort (2016) considers the interdependence
of demands in light of architecturally significant
events, adding a time dimension.
Product life cycle management - optimization of
the process and flow of values
Although management does not bind to agile
approach, agile projects must be managed,
because management is directly related to the
possibility of scaling, and for this are preferred
lean management practices (Ambler, 2009). It is
essential to focus on improving workflow and
quality while eliminating delays and errors in
order to avoid unnecessary work on corrections
(Hayata et al., 2012). A particular challenge is an
effective management of the workflow process,
which consists of linked, interdependent tasks,
e.g. when it is necessary to determine the optimal
size of architectural increment in order to prevent
and eliminate architectural losses (excess
production, delays, and defects) (Nord, et al.,
2012).

Poppendieck and Cusumano (2012)
summarized the aforementioned challenges in a
set of principles: optimize the whole, eliminate
waste, build quality in, learn constantly, deliver
fast, engage everyone, and keep getting better. In

this regard, it is necessary to identify and remove
any obstacle that frustrates the stakeholders or
developers and blocks the work of the team
(Buschmann & Henney, 2013). Also, it is
necessary to identify the architectural challenges
that are obstacles to the flow of value, i.e. the
obstacles to the efficient work of the team, for
example, unnecessary work, transfer of
responsibility, delays, unfulfilled architectural
requirements, etc. (Power & Conboy, 2015).
Organization, communication and coordination
When forming teams, it is necessary to find
people of appropriate character and behavior
(Moore & Spens, 2008) because poor
communication between architects and teams
working in parallel leads to the problem of
"shooting at a moving target" (Isham, 2008).
Development teams generally do not have enough
knowledge or experience to combine agile
methods and techniques in the right way,
depending on the context (Ramakrishnan, 2010),
while, in a scaled context, it is not realistic to
require all team members to deal with
architecture, because this is sometimes impossible
due to size, e.g. 100+ team members (Eckstein,
2014).

Therefore, the need for effective
communication between stakeholders (Fontdevila
& Salias, 2013; Woods, 2015) and coordination of
development teams (Ozkaya et al., 2013; Martini
& Bosch, 2016) is emphasized, while ensuring
that the development process supports project
teams, and not vice versa (Buschmann & Henney,
2013). A particular challenge is to align the
architecture and structure of the organization, i.e.
vertical and horizontal decomposition of the
system, and mapping software modules with
people and/or teams responsible for their
development, in order to minimize the
communication links between teams (Nord,
Ozkaya & Kruchten, 2014).

In the digital era, in the conditions of a
distributed environment, a close communication is
required between the team that developed the
module/service and the teams that use it
(Villamizar et al., 2015) to avoid problems
because of poor mutual understanding due to a
different interpretation terms (Gerdes et al., 2016).
Poor communication between teams (in relation to
communication within teams) leads to conflict in
the realization of tasks, which only can be
identified by code revision (Britto et al., 2016).

18 Dragičević et al. Agile architecture in the digital era – trends and practices

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

Application of microservice architecture
Non-trivial challenges are inherent in distributed
SOA-based systems, such as data integrity,
consistency conservation, design and service
interface evolution, application/service/
infrastructure management and security
(Zimmermann, 2016b). Microservices, as another
SOA incarnation, is further characterized by life-
cycle challenges (development, testing, delivery,
scaling, operations, modification, and
replacement), such as: tolerance for failure,
distributed transactions, heterogeneous data
distribution, versioning, and granularity
(Villamizar et al., 2015).

Although microservices and SOA carry great
potential to improve flexibility and sustainability
by applying and combining their principles and
practices, they still need to show long-term cost-
effectiveness (Zimmermann, 2016a). Combined
development and production environment is
complicated, as microservices require a
sophisticated DevOps infrastructure, based on
cloud and container technologies, which support a
hyper-agile, lean process of software development
and delivery (O'Connor, Elger & Clarke, 2017).

The application of microservices may be
difficult in conditions of tightly connected
components. With the challenge of finding a
balance between complexity and flexibility,
security and other quality attributes problems are
possible (Holmes & Nicolaescu, 2017), with a
particular emphasis on finding balance between
performance and granularity (Shadija, Rezai &
Hill, 2017). Many developers have a problem due
to the change of paradigm from in-process to calls
across a process boundary, as well as problems
with versioning and error management, while
redundancy in the implementation of
microservices (coarse-grained & fine-grained)
often prevents reuse (Pautasso et al., 2017a).

The challenge may also be the coordination of
the work around the API gateway, i.e. the
appearance of a bottleneck that blocks other
teams. In addition, it is important to automate
testing and monitoring to answer the questions of
how to find out something is wrong and how to
collect data for the purpose of visualization. It is
essential to understand the fact that a large system
has different rules from a small system, e.g. in a
small system, redundancy is avoided, transactions
are processed and a common data model is
defined, while in a large systems redundancy is
required, compensation is used instead of
transactions, and a common data model is a recipe

for failure. With this in mind, it is particularly
problematic that programming is mainly taught
on small systems. This situation requires greater
use of tools, technologies, and designs at the
system level to hide delivery and scaling jobs
from developers (Pautasso et al., 2017b).
New business models of digital economy
The software value-creation epicenter has
changed, so instead of focusing on transaction
management and equipment control, new business
models, such as Two-sided Market and Creating
engaging experiences, require the construction of
ecosystems that will attract users with the ability
to understand and focus on the important needs of
users who are not adequately serviced. The user
experience design is the fundamental element of
this approach (Poppendieck & Cusumano, 2012).

In the digital era, wide access to the Internet,
mobile devices, SaaS (Software-as-a-Service)
products, massively consumed startup products
have led to a change from B2B to B2C and the
emergence of a pay-per-use business model
(Villamizar et al., 2015). The API economy
further increases the complexity, so modern
systems are expected to be automatically,
horizontally scaled to the required number of
machines, automatically delivered anywhere,
manageable, exchangeable, resistant, with zero
tolerance for failure, self-adjusting and
unbreakable. The boundaries of the context of
Internet-scaled systems and their architecture
become blurred, while monolithic software
applications have been changed by Internet-based
ecosystems based on microservice architecture
with more dynamic and complex runtime
characteristics (Hohpe, Ozkaya, Zdun &
Zimmermann, 2016).

3.1.2. The success factors of agile architecture in
the digital era

Ten key success factors have been identified
which are associated with several different
sources (Table 4).
Understanding the context and selecting the
implementation strategy
One of the key characteristics of the agile process
is a strong awareness of the context, i.e. the ability
to know what is going on (Madni, 2008), while
Babar (2009) argues that in agile approach context
analysis, definition of problems and specifications
of the request are shifted to the user.

Dragičević et al. Agile architecture in the digital era – trends and practices 19

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

For Abrahamson (2010) the context is crucial
for balancing agility and architecture, whereby the
context includes: project size, architecture
stability, business model, team distribution,
degree of change, age of the system, criticality
and management, as well as the influence of other
factors: the market situation, the strength and
policy of the company, the expected life cycle of
the product, the type of product, organizational
culture and history.

Although the software architecture is relevant
to the members of the agile teams (Falessi et al.,
2010), agile methods are only suitable for projects
in a particular context (Prause & Durdik, 2012),
while the context determines the amount of Up-
Front work on architecture (Waterman et al.,
2012). Nord et al. (2014) emphasize the
importance of the context for aligning system

architecture, organization structure and production
infrastructure, while 20 contextual factors related
to project, team, practices and organization
determine whether architecture can emerge as a
result of continuous refactoring (Chen & Babar,
2014) .

In the digital era, context change is one of the
main obstacles to the continuous process flow
(workflow) (Power & Conboy, 2015). Architects,
depending on the particular context, must adapt
Risk-and-Cost Driven Design (RCDD) methods,
pragmatic modeling, and technical debt
management to make effective decisions
(Zimmermann, 2016a), so organizations values
the architect by ability to make the right decisions
in an unclear context (Erder & Pureur, 2016).
Internet-connected architecture adds complexity
and blurs the boundaries of the system context

Table 4 The success factors of agile architecture in the digital era

Success factor 2001-2010 2011-2014 2015-2017
Understanding the context and selecting the
implementation strategy

S05 S08 S16 S17 S21 S26 S35 S37 S41 S44 S46 S50 S56
S58 S59

Understanding the role, responsibilities and
competencies of an architect

S04 S08 S13 S15 S19 S24 S25 S30 S31
S32 S35 S36

S42 S46 S49 S50 S53
S56 S57 S58

Traditionalization of agile approach S03 S09 S18 S30 S42 S47
Application of lean principles and practices S01 S04 S06 S07 S10 S29 S32 S45 S49 S59 S60
Application of continuous principles and
practices

S06 S31 S34 S44 S51

Use of architectural styles, design patterns
and components

S08 S23 S30 S23 S30

Decomposition and granularity S10 S22 S23 S27 S31 S41
An evolutionary approach S06 S07 S28 S29 S31 S32 S35 S42 S45 S47 S49 S53
Quality attributes - continuous focus and
prioritization

 S45 S46 S52 S54 S57
S58 S59 S60 S61

Application of tools and technologies in the
combined ecosystem

 S27 S56

Source: Authors

Figure 4 Agile architecture forces and implementation strategies
Source: Waterman et al., 2015.

20 Dragičević et al. Agile architecture in the digital era – trends and practices

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

(Hohpe et al., 2016). Domain Driven Design
(DDD), bounded context and Conway's law are
key success factors of microservices (Pautasso et
al., 2017a), while changing boundaries of the
service context over time is one of the most
significant challenges of microservice architecture
(Pautasso et al., 2017b).

Based on the importance of the influence of
individual driving forces (demand instability,
technical risk, rapid delivery of value, team
culture, user agility and experience) in a given
context, one of the following strategies for
implementing agile architecture can be selected
(Figure 4) or combine multiple strategies
(Waterman et al., 2015):

Respond to changes - a strategy directly linked
to the agility of teams where greater agility of
architecture and new tolerance for change allows
architecture to continuously present the best
solutions to the evolving problem. The team can
use the following tactics: simple design, iterative
proactive architecture revision, the use of good
design practices, delaying architectural decisions,
and planning for options.

Addressing risk - reduces the impact of risk
before the problem arises, usually Up-Front,
especially for decisions that have a wide impact
(e.g. selection of technological streak or
architectural style), where architecture is designed
so that it is possible to build a system with the
required quality attributes with an acceptable level
of risk.

Emergent design - the team adopts minimum
Up-Front decisions, such as the choice of
technology stack or architectural style/pattern,
whereby these decisions are sometimes implicit,
or have already been made (e.g. by users), and can
be viewed as constraints, then we have the so-
called total emergent design. The team considers
only current requirements, ignoring long-term,
with the simpler design that allows the product to
reach the market as soon as possible (MVP -
Minimum Viable Product).

Big Design Up-Front - requires the
identification of all requirements and a complete
architectural design before development begins
(although architecture can evolve during
development) which makes this strategy
unwelcome in an agile approach. It can be
considered in case of extreme risk, but is more
often driven by the lack of agility of the user than
by the technical risk.

Frameworks & templates - means the use of
software frameworks, templates, and reference

architectures, providing standard solutions for
standard problems and reducing the number of
architectural decisions. The use of the Convention
over Configuration (CoC) paradigm reduces
complexity since many architectural decisions are
embedded in a framework, so formerly
architectural decisions are now considered design
decisions, and an easier change in architectural
decisions is of great use in the application of agile
methods. It should be aware that a framework
does not always represent a comprehensive
solution, so this strategy is combined with other
strategies (Waterman et al., 2015).
Understanding the role, responsibilities and
competencies of an architect
The traditional role of an architect is changing,
which implied deep domain knowledge, a high
level of abstraction in defining the structure, and
an implicit or explicit right to make a decision in
the field of interest (Poort, 2016). The architect
focuses on delivering architecture as a service
(Blair et al., 2010; Faber, 2010), coding according
to needs, transferring technical knowledge (Babar,
2009), assisting the team in "violation of rules",
providing communication on minimum
documentation, with a division of responsibilities
on the quality attributes (architect) and
functionality (team) (Faber, 2010).
 The architect must be a good communicator
(Faber, 2010), while management skills are
important in large distributed teams (Babar,
2009). The key role of the architect is to focus on
the question "What is blocking the agility of the
team?" (Buschmann & Henney, 2013) and to
remove any obstacle that blocks the team's agility
and frustrates the stakeholders (Mirakhorli &
Cleland-Huang, 2013). He must have a clear
architectural vision (Buschmann, 2012), to think
beyond structure and technology by dealing with
the structure of organization and production
infrastructure (Nord et al., 2014), spending the
most time with people living with his decisions
(Buschmann, 2012).

The architect is involved in all phases of the
development process while delaying his decisions
(Hadar & Sherman, 2012). Coding as needed,
giving preference to mentoring and teaching in
relation to documentation, spends time with the
user to understand how the system will be used,
and the real requirements are derived from
feedback from the users (Mirakhorli & Cleland-
Huang, 2013). Although decisions can be made by
the team, the architect takes care that the decisions

Dragičević et al. Agile architecture in the digital era – trends and practices 21

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

are consistent throughout the system, even when
multiple teams work simultaneously, thus
protecting the conceptual integrity of architecture
and design. The architect has leadership qualities
(Buschmann, 2012), technical knowledge and
experience in design (Buschmann & Henney,
2013).

In the digital era, the role of the architect,
which evolved from a specialist in a traditional
architectural domain to a solution architect, was
changed (Erder & Pureur, 2016; Zimmermann,
2016a). The architect must take into account
scaling, complexity and distribution (Britto et al.,
2016), and focus on system design that will be
incrementally tested and quickly delivered in
different environments (development, testing,
production) across different platforms, private and
public clouds (Erder & Pureur, 2016), where
hardware infrastructure is added to the scope of
competencies of the architect (Hohpe et al., 2016).

The architect becomes a connecting element,
building bridges between teams and different
levels of organization through leadership (Hohpe
et al., 2016) and taking responsibility for design
decisions that are risky, costly, and difficult to
change (Woods, 2015), with constant
management and monitoring of the current state
of architecture (Holmes & Nicolaescu, 2017). The
architect takes into account the complete life cycle
of the software product, understands the source
code, works in a decentralized manner, processes
the government through the delivery process,
removes all obstacles and provides resources for
product delivery, directing and delivering timely
decisions, minimizing multitasking and ensuring a
coherent and sustainable product architecture
(Erder & Pureur, 2016).

Leadership, mentoring and the translation of
complex concepts into understandable concepts
become more important than ever before (Hohpe
et al., 2016). Different architectural competences
are required at various management levels:
technical skills, domain expertise,
communicativeness and charisma (Martini &
Bosch, 2016). The architect must have extensive
knowledge of business domain and technology, as
well as current architectural and agile practices
(Holmes & Nicolaescu, 2017). He must be able to
transfer and combine knowledge from isolated
domains, must have broad views, including views
on other industries as a source of new ideas
(Hohpe et al., 2016).

The architect must act quickly and facilitate
decision-making in an uncertain environment, in

which knowledge and experience are needed,
nontechnical skills such as communication and
the ability to operate in ambiguous contexts are
increasingly critical (Erder & Pureur, 2016). Due
to the increasing “need for speed” in the digital
era, additional skills are needed, as architects are
involved in development, operations and
maintenance, so they need to improve their
business, financial, communication and
educational skills.

In recent years, the trend of inversion of
specialization is evident, where, for example,
development of microservices or certain
functionalities, requires full-stack developers that
combine the skills of database design, integration,
business logic of the domain and user interface, so
that the role of the architect becomes virtual, i.e.
becomes the responsibility of the team. Although
increasing the complexity of the technology does
not support this trend, time will show whether
such a trend will be sustainable over the long
term.

Generalists are necessary in distributed
systems to deal with cross-cutting aspects such as:
development of cross-domain software solutions,
service deployment and testing (Pautasso et al.,
2017a). At the same time, the development of the
middleware platform reduces the need for
architectural decisions, and by increasing the
capacity and possibilities of a collaborative
development environment, modern software tools
further reduce the need for an architect (Hohpe et
al., 2016).
Traditionalization of agile approach
In order to overcome the gap between speed and
stability, traditional and agile methodologies are
combined (Nord & Tomayko, 2006), in so-called
traditionalization of the agile process of software
development using architectural practices
(Ambler, 2002; Babar, 2009; Erdogmus, 2009;
Abrahamsson et al., 2010; Faber, 2010; Kruchten,
2010; Madison, 2010; Matković, Tumbas &
Sakal, 2011) while at the same time combining
various agile methods, techniques and practices
(Ramakrishnan, 2010).

Agile approach is inclusive (Hayata et al.,
2012), so ethno-relativism gradually prevails over
ethno-centrism in the relation of agility and
architecture (Kruchten, 2010), resulting in a wide
application of architectural principles and
practices in the agile process of development
(Miyachi, 2011; Bellomo, Kruchten, et al., 2014;
Eckstein, 2014; Nord et al., 2014), including risk

22 Dragičević et al. Agile architecture in the digital era – trends and practices

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

analysis (Ozkaya et al., 2013) and architectural
modeling (Durdik, 2011; Prause & Durdik, 2012).

In the digital era, the application of
architectural principles and practices in the agile
development process, where ones are used in the
conditions of the desired state, and the others
outside the conditions of the desired state
(Bellomo et al., 2013), is needed, but not
sufficient. It is necessary to apply combined
practices from other areas (from management to
engineering), as well as the transformation of the
development process according to the situational
context (O'Connor et al., 2017).
Application of lean principles and practices
Lean principles enable efficient management in
the agile development process by means of a
management mechanism that motivates and
supports IT professionals to do what an
organization deems necessary (Ambler, 2009).
Lean architecture emphasizes the importance of
the form in relation to the structure. It focuses on
the requirements of not only the users, but also the
broader stakeholders, and along with the static, it
includes a dynamic component, too (Booch,
2010). While the agile approach has a focus on
speed, lean is focused on the "right way",
avoiding premature optimization, timely thinking
and planning through the early engagement of the
team, domain experts and users in the
architectural design (Hayata et al., 2012).

The combination of agile and lean practices,
and the application of a lean concept for flow
management, enables visualization, monitoring of
technical debt and errors, balancing the allocation
of critical architectural tasks and improving
process flows, contributing to the reduction of
total delay and number of errors/corrections
(Buschmann, 2012). The application of lean
approach has the potential to unify architecturally
important tasks with functionalities, as opposed to
agile methods that mainly create artificial
boundaries, so defining tasks becomes a major
problem (Nord et al., 2012).

Lean principles and thinking mean a focus on
the complete product life cycle, i.e. combining
design, development, delivery and validation in
one feedback loop focusing on finding and
delivering value, and continuous learning. By
developing new business models (for example,
Two-sided market & Creating engaging
experience), the deeper understanding of what the
user wants to do and how the software can help
him with it (design thinking) is increasingly

important, where the key to success is the ability
of a gradual change (Poppendieck & Cusumano,
2012).

In the digital era, in order to achieve a
continuous flow of values through the
organization (end-to-end), lean thinking begins
with an understanding of the flow of values and
possible barriers in the course of value, with
architecture being an integral part of this process.
In this regard, it is important to use proactive
(leading) metrics for the quality of current flows
that can identify hidden obstacles in flow of value
(Power & Conboy, 2015). Open, lean and
sustainable architectural practices and techniques
are required to build comprehensive and
understandable frameworks, including
sophisticated DevOps lean infrastructure (service
deployment pipeline) with service monitoring,
adapted for decentralized continuous delivery of
value (Zimmermann, 2016a).

Combining agile practices and lean start-up
that will support the flow of values from concept
to production, and continuous learning from user
experience, in a continuous development cycle
(build-measure-learn), are crucial for the software
product to go on the market and provide long-
term survival (Hohpe et al., 2016; Pautasso et al.,
2017a).
Application of continuous principles and practices
Madni (2008) emphasizes the continuous and
incremental deployment, as the second most
important principle of agile architecture, while for
Isham (2008) continuous integration (CI)
significantly reduces complexity and risk. In order
to balance the agility and architecture, a
continuous focus on architecture and continuous
refactoring (CR) is necessary (Erdogmus, 2009;
Booch, 2010), while the evolutionary and
continuous development process and the exchange
of ideas are crucial to achieving essential
architecture (Blair et al., 2010).

Speed drives everything else, therefore
continuous delivery (CD), with increased focus on
CI (Bellomo, Ernst, et al., 2014; Nord et al.,
2014), becomes important to enable continuous
flow (CF) delivering new software to the
production environment in a safe and reliable way
(Poppendieck & Cusumano, 2012), even in the
case of critical and very large online systems
(Nord et al., 2014). Therefore, interest in the CD
is growing steadily (Bellomo, Ernst, et al., 2014).
On the other hand, Continuous Learning (CL)
minimizes the effort to create functionality that

Dragičević et al. Agile architecture in the digital era – trends and practices 23

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

users will not need (YAGNI) (Poppendieck &
Cusumano, 2012). CR is needed for good
architecture (Fontdevila & Salias, 2013;
Mirakhorli & Cleland-Huang, 2013), even
sufficient for emergent architecture, if certain
contextual factors are met (Chen & Babar, 2014).

In the digital era, CR continues to play a
significant role (Hohpe et al., 2016; Holmes &
Nicolaescu, 2017), CI tools are applied (O'Connor
et al., 2017) with the continuous improvement of
the agile development process (Scrum AND)
integrating test-driven practices, such as
automated Test-Driven Development (TDD) and
CI, focusing on built-in-product quality attributes:
modifiability, performance, availability,
interoperability, security, usability, testability and
deployability (Bellomo, Gorton & Kazman,
2015). The CD attracts great attention due to its
potential (Bellomo et al., 2015; Chen, 2015; Erder
& Pureur, 2016; Hohpe et al., 2016;
Zimmermann, 2016b; O'Connor et al., 2017;
Pautasso et al., 2017a, 2017b), such as: faster
market entry, production of the "right" product,
improved productivity and efficiency, better
product quality, more satisfied users (Chen,
2015).

In this regard, the deployability feature
appears as a completely new concept or quality
attribute, which aims to reduce complexity and
shorten the cycle, in the form of small,
incremental, automated and reliable delivery
(Bellomo et al., 2015) that enable a continuous
flow of values (Power & Conboy, 2015).
Architectural challenges arise due to CD (Chen,
2015), decentralized CD (Zimmermann, 2016b)
and the appearance of microservices.

Microservices eliminate the so-called single
point of failure using a CD strategy that only
changes individual microservices while delivering
it, without interruption, in others (Chen, 2015),
allowing rapid scaling and delivery of
applications for millions of users on cloud
platforms (Villamizar et al., 2015). In a
continuous family, a new practice, called
Continuous Architecting (CA) emerged (Erder &
Pureur, 2016; Martini & Bosch, 2016; Holmes &
Nicolaescu, 2017), which presents a set of rules,
architectural styles and tools that help the rapid
delivery of software, supported by architectural
principles (Holmes & Nicolaescu, 2017).

Use of architectural styles, design patterns and
components
Applying component-based and pattern-based
approaches is essential for building an intentional
architecture (Leffingwell et al., 2008), while
architectural style and principles should guide
implementation, taking into account the form, not
just the structure (Booch, 2010). Agile methods
do not support the reuse of patterns, planning of
reference architecture and components, or the
development of a product line. Therefore, it is
necessary to combine agile methods and
architectural modeling with patterns and
components (Durdik, 2011).

Architectural dynamics and agile principles
can be supported by architectural patterns in order
to avoid BDUF, e.g. Sashimi pattern or
Concentric approach (Fontdevila & Salias, 2013).
Architecture can be viewed in the light of the
application of patterns and tactics that affect the
time and cost of implementation, testing and
delivery of changes. It is possible to apply
different styles, patterns and tactics (N-tier, client-
server, SOA, publish-subscribe...) to achieve agile
architecture (Bellomo, Kruchten, et al., 2014),
bearing in mind that strong components
dependency is obstacles for continuous integration
(Bellomo, Ernst, et al., 2014).

In the digital era, microservices and SOA, or
(micro) service design patterns and principles, are
an integral part of digital frameworks with quality
stories, C4 architectural modeling, decision
sharing (Y-statement), architecturally visible
coding style, architectural refactoring and
architectural roadmap (Zimmermann , 2016a). In
modern Internet-based systems, which are
flexible, dynamic, and based on microservices,
long-term sustainable architecture is more a set of
patterns and principles than a static, stable
structure (Woods, 2016). Therefore, the need for
the application of architectural styles (Pautasso et
al., 2017b), design patterns and principles (Britto
et al., 2016), at different levels, from architecture,
through design to implementation (Gerdes et al.,
2016), is greater than ever.
Decomposition and granularity
Attribute-driven design (ADD) method supports
horizontal (breadth-first) and vertical (deep-first)
approach to decomposition of design, which
depends on the business context, domain
knowledge and application technology (Nord &
Tomayko, 2006). Although the feature/business-
centric decomposition should be the primary

24 Dragičević et al. Agile architecture in the digital era – trends and practices

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

approach, for more efficient delivery of the
project, the decomposition in line with
architectural boundaries and frameworks should
once again take priority, because iterations over
architectural boundaries can open too many
simultaneous challenges by increasing risk, such
as simultaneous work with a large number of
technologies. Therefore, the decomposition must
be in line with the nature of the software product
(Madison, 2010).

There are more approaches to the
decomposition of domain problems and
architectural aspects (Durdik, 2011). Unlike
functionality, design is not easy to decompose
into smaller tasks or "technical stories" and
engage in agile practices (Bellomo, Kruchten, et
al., 2014). The focus on horizontal decomposition
(infrastructure and system elements, as well as
common services) is needed in conditions of
unstable infrastructure and production
environment.
The more stable the infrastructure (platform,
framework, tools) is, it is possible a better
functional, vertical decomposition, which reduces
the need for communication and coordination, and
allows for better synchronization of the teams for
parallel work (Nord et al., 2014). Expanded
functionality should be divided into smaller
increments that enable fast delivery of value to the
user and fast feedback from users (Chen & Babar,
2014).

In the digital era, SOA and microservices, i.e.
services of different granularity (macro & micro),
reduce dependency with the help of vertical
decomposition, allowing their independent
development, testing and delivery (Villamizar et
al., 2015; Poort, 2016; Zimmermann, 2016b;
Holmes & Nicolaescu, 2017; Taibi et al., 2017),
where the decomposition approach is chosen
based on the context, vision, requirements and
criteria of dependency, where DDD is one, but not
the only one (Pautasso et al., 2017a).

Bearing in mind that the system will change
over time for sure and that the service
decomposition (or composition) is a reaction to
the change of domain problems, the services
should be designed to be updatable and/or
rejectable, with the granularity evolving according
to the requirements and experience, i.e. it should
not be dictated by the choice of architectural style
(Pautasso et al., 2017b). It should be kept in mind
that granularity has an effect on performance
(Pautasso et al., 2017a; Shadija et al., 2017).

An evolutionary approach
An evolutionary approach to the development of
architecture is essential, whether seen as the
evolution of intentional architecture (Ambler,
2002), the evolution of the minimal (walking
skeleton) architecture (Abrahamsson et al., 2010),
a continuous evolutionary process that results in
an essential architecture (Blair et al., 2010), an
evolutionary approach to the design of prototype
and delivery (Nord & Tomayko, 2006) or a
continuous incremental-iterative evolution that
inhibits the erosion forces for the survival of
every economically viable system (Booch, 2007;
Erdogmus, 2009). The achievement of the
evolutionary architecture of complex systems, as
one of the principles of agile architecture (Madni,
2008), requires integration of architectural
principles and agile approach (Babar, 2009).

The possibility of the evolution of the system
is one of the advantages of software architecture
(Durdik, 2011), which is important both for long-
term systems and when the system should be
translated from the state of "as-is" to the state of
"to-be" (Ozkaya et al., 2013). Rare are systems
that are built from scratch, but the existing
architecture, which is becoming the subject of
continuous evolution (Mirakhorli & Cleland-
Huang, 2013), is mainly used, and an evolutionary
approach is also suitable for building a core
product line architecture (Harper & Dagnino,
2014).

For an evolutionary approach, those practices
that enable small changes (increments) in short
iterations, as well as techniques that allow fast
feedback and learning, should be kept in mind,
with the constant evolution of the requirements
and their interrelations (Bellomo, Kruchten, et al.,
2014; Nord et al., 2014), as well as the need for
"just enough anticipation" (Poort, 2014).

In the digital era, software architecture
evolves, from mainly technical discipline, to
inclusion of business, sociological and cultural
aspects, while, on the other hand, the rapid
development of technology and new business
models constantly moves the target in advance
(Hohpe et al., 2016). The pressure to evolve
software systems by delivering value at shorter
time intervals is greater than ever, instead of 1 or
2 times per year, a competitive market requires
weekly, daily or even shorter delivery times
(O'Connor, et al., 2017).

There is a growing consensus that good
architectural foundations allow rapid, reliable and
sustainable evolution of complex software using

Dragičević et al. Agile architecture in the digital era – trends and practices 25

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

an iterative-incremental approach (Bellomo et al.,
2015; Woods, 2016). The application of the
evolutionary design (Bellomo et al., 2013;
Zimmermann, 2016b; Pautasso et al., 2017a)
implies alignment with decisions that are later
difficult to change and the application of tactic
“start stupid and evolve” (Pautasso et al., 2017b),
while avoiding architectural changes in each
individual iteration, as this leads to cost increases
(Waterman et al., 2015), but defects need to be
timely identified in order to preserve the long-
term evolution and sustainability of architecture
(Britto et al., 2016).

Evolution of components (Woods, 2015) and
services (Zimmermann, 2016b) implies the
application of the principle of backward
compatibility, so that the changes affect users less.
Evolution and change should get the lead, with
timely anticipation of future architecturally
significant events and their evolution point of
view (Poort, 2016). It seems that the next phase,
the so-called dynamic evolution, be even more
radical, with intelligent dynamic compositions,
cloud platforms, and linking IoT (Woods, 2016).
Quality attributes - continuous focus and
prioritization
Traditional architectural methods (QAW, ADD,
ATAM, CBAM) put an early focus on quality
attributes (Nord & Tomayko, 2006), as opposed to
agile methods that focus on fast delivery of value
and enable improvement in so-called "3 big":
quality, productivity and morale (Leffingwell et
al., 2008). While the traditional approach is used
to evaluate the quality attributes, advocates of the
agile approach argue that refactoring helps to
acquire the quality attributes. Quality attributes
and their prioritization are not in the focus of agile
approach, as they are often not a measure of
success, but a focus on functionality, budget and
delivery deadlines (Babar, 2009).

Quality attributes should be in the focus as
soon as possible, with the division of
responsibilities to the architect (quality attributes)
and development team (functionality) (Faber,
2010). A combination of architectural and agile
techniques is needed to achieve a balance between
business (functionality) and architectural (quality
attributes) priorities (Madison, 2010). Undefined
quality attributes are the causes of design,
documentation and code problems (Prause &
Durdik, 2012). In order to support a continuous
flow of values, prioritization needs to consider the
dependence between functional stories and non-

functional requirements (quality attributes), and
consequently, the dependent functional
requirements earlier in development should be
withdrawn (Buschmann, 2012; Nord et al., 2012;
Fontdevila & Salias, 2013).

Quality attributes are an integral part of risk
analysis and architecture evaluation (e.g. QA
utility tree) (Ozkaya et al., 2013). Identifying and
prioritizing quality attributes, as a continuous
process, is crucial for the implementation of
valuable functionalities without the risk of
intensive re-design or complex coordination
between multiple teams (Nord et al., 2014). The
possibility of continuous and rapid delivery
(deployability) can also be considered as a quality
attribute (Bellomo, Ernst, et al., 2014).

In the digital era, and the Internet-connected
system, the focus is on the quality attributes,
agility and decision-making (Hohpe et al., 2016;
Woods, 2016; Holmes & Nicolaescu, 2017), so
architectural requirements are involved in sprint
planning and demo prototyping, in such a way
that explicit attention to architecture allows long-
term modifiability and evolution (Britto et al.,
2016). Lack of prioritization of quality attributes
leads to problems in security, monitoring, and
integration (Woods, 2015). In the CD context, the
priorities of individual quality attributes are
increased: deployability, security, loggability,
modifiability, monitorability, testability (Chen,
2015), as they ensure that architecture is
optimized for different phases of the development
cycle (Holmes & Nicolaescu, 2017).

For the users, the most important are the
following quality attributes: functionality, quality,
availability, ease of use, performance, variability,
safety, interoperability and simple testing
(Tumyrkin, Mazzara, Kassab, Succi & Lee 2016),
where prioritization of quality attributes positively
affects the reduction of documentation (Gerdes et
al., 2016).

Microservices are a good choice if they meet
the required quality assignments, but account
must be taken of possible changes in the
requirements, especially when it comes to
security, as well as a balance of flexibility and
complexity (Holmes & Nicolaescu, 2017).
Application of tools and technologies in the
combined ecosystem
Although Ambler (2002) puts focus on people,
communication and techniques, a good choice of
implementation technology can simplify
development, improve system extensibility and

26 Dragičević et al. Agile architecture in the digital era – trends and practices

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

ease of use (Leffingwell et al., 2008).
Traditionally, there was a strict division of
applications and support infrastructure (testing,
configuration and management tools, deployment
scripts, and other components), which was not
considered as an integral part of the system.

However, by applying combined practices,
with the support of modern tools, this division
between the development and production
environment is increasingly being eradicated by
forming a combined ecosystem (Bellomo, Ernst,
et al., 2014) where CD is primarily used instead of
a project approach, and architecture must be
designed from the beginning to support dynamic
updates and continuous changes (Poppendieck &
Cusumano, 2012).

Fontdevila and Salías (2013) emphasize the
importance of technology and tools at four levels:
frameworks and testing tools, quality assurance
tools, tools for monitoring metrics about
flexibility and long-term maintenance
(maintainability), and deployment tools &
configuration, while Mirakhorli and Cleland-
Huang (2013) suggest the use of code and design
testing tools. Application of the DevOps concept
involves merging development and operations
into one team, using CD-enabled tools even in the
case of large, online, critical systems (Nord et al.,
2014).

In the digital era and the Internet-connected
system, system of systems or software ecosystems
are formed in all industries (Hohpe et al., 2016)
with interconnections between commercial and
custom-made software, hardware platforms and
organizational entities, of which each has its own
evolutionary cycle (Poort, 2016).

In such an environment, architectural decisions
are also technology-related decisions about
frameworks, language, platforms, etc. (Gerdes et
al., 2016), whereby information is to be shared
with simple tools (Woods, 2015). The architect
must prove the benefit of new technologies by

creating an executive prototype, as part of an
architectural runaway (Erder & Pureur, 2016).
Modern open source development tools, code
management, testing, deployment, production,
monitoring and configuration are gaining
importance, while the contemporary effective
software development process is hardly
conceivable to the previous generation of
developers (O'Connor et al., 2017).

For this reason, the focus of the researchers
and practitioners has shifted from people and
processes to integration technologies and
platforms (RESTFull API, cloud computing,
DevOps) (Zimmermann, 2016b). Observed from a
modern architectural perspective, along with a set
of architectural rules, it is also necessary to
provide support tools, which will support both
incremental and agile delivery methods such as
CD (Holmes & Nicolaescu, 2017).

As the capabilities of development platforms
and environments increase, development teams
are increasingly accepting tools and practices that
allow them to avoid major BDUF decisions, to
divide them and eliminate dependencies, in which
they help the intensive development of
middleware platforms that reduce the need for
architectural decisions by integrating them into
technological environment, further reducing the
need for an architect.

This trend raises the question of whether the
need for an architect is lost, and some Internet-
scaling companies (like Google and Spotify) have
almost no positions with the name of the architect,
with their architecture living in code, with
documented decisions, managed through a version
control system or code review tools that support
visualization techniques and tools (Hohpe et al.,
2016).

Microservices require automated deployment
tools and the DevOps strategy (develop, test,
deploy, operate, monitor) (Villamizar et al.,
2015), so, the modern technological environment

Table 5 Agile architecture practices in the digital era

Practice 2001-2010 2011-2014 2015-2017
TDD / Testing / Automated testing S06 S04 S08 S11 S23 S24 S27 S25 S28

S29 S34 S38
S39 S42 S43 S44 S45
S49 S50 S53 S59

Prototype / Experimentation (spikes) S04 S11 S13 S23 S30 S31 S33 S35
S38

S39 S42 S44 S52 S58
S59

Lean thinking S08 S14 S22 S23 S27 S31 S36 S41 S44 S51 S52 S54
S56

Incremental value delivery S07 S11 S14 S23 S27 S34 S35 S36 S39 S40 S42 S43 S54
S57

Refactoring / Continuous Refactoring S02 S03 S06 S07 S09
S11 S12 S14 S18

S19 S20 S23 S25 S30
S35 S36 S37

S53 S46 S56 S57 S58

Dragičević et al. Agile architecture in the digital era – trends and practices 27

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

favors the development of microservices, since
each service can be designed, developed and
shipped by a different team and on a different
technological stack. In addition, the team is in

charge of the complete development process of
the service including deployment, operations and
update.

Practice 2001-2010 2011-2014 2015-2017
Continuous Architecting / Zipper model S09 S12 S16 S21 S30 S36 S38 S50 S53 S56 S57 S60
Revision of source code / Code & Sprint
review

S06 S08 S14 S19 S24 S47 S49 S52 S53 S56

Evaluation of architecture and design S08 S14 S15 S16 S17 S19 S21 S24 S25 S29
S30

S39 S44 S52 S56

Multi-level teams / Scrum of Scrums / SAFe
/ CAFFEA

S06 S28 S29 S35 S41 S49 S53 S57

Continuous Integration S06 S27 S29 S37 S38 S39 S49 S52 S58
Continuous Learning S13 S27 S31 S34 S49 S56 S58
Minimum Viable Architecture (MVA) /
Walking skeleton

S12 S13 S14 S20 S25 S35 S38 S42 S44 S57

Organizing a team according to Convey's
Law

S04 S31 S35 S54 S58 S59

Architectural Runaway S04 S35 S36 S50 S51 S53
Architectural Roadmap S08 S25 S46 S51 S56
Deffering architectural and design decisions S15 S20 S24 S31 S33 S42 S44
Minimum documentation / Realized
architecture documented in source code

S13 S18 S20 S30 S47 S50

Pair-programming S06 S11 S19 S21 S25 S39
Common semantics / Metaphor / Common
Language

S08 S35 S58

DevOps S35
S45 S49 S50 S51 S52
S54 S56 S58 S59 S60

Continuous Delivery S27 S35 S38
S40 S43 S45 S49 S50
S52 S56 S59 S60

Cloud Computing S38
S45 S50 S47 S54 S55
S56 S61

Minimum Viable Product (MVP) / Lean
Start-Up (build-measure-learn)

 S20 S27 S30 S35
S42 S44 S50 S56 S58
S60

Small, autonomous and dedicated teams
for work in a bounded context / 'Two-pizza'
teams

 S35 S39 S57 S58

Continuous Flow of Value (end-to-end) S27 S41 S56 S59
Resolving interdependences S23 S36 S39 S42 S51
Combined ecosystem / Dev, Build, Test,
Oper, Prod tools & environments support

 S27 S34 S35 S38 S45 S60

Design principles (SOLID, KISS, DRY /
IDEAL)

 S30 S37 S42 S44

RCDD (Risk & Cost Driven Design) S36 S46 S51
System monitoring S38 S53 S56
Kanban visualization / WIP limit S23 S27 S41

Use of Microservices / SOA
S45 S46 S51 S52 S55
S56 S60 S61

Cloud-based services (IaaS, PaaS, SaaS /
FaaS, Serverless)

 S45 S55 S56 S59 S61

RESTFull API / HTTP S45 S54 S56 S58 S61
Containerization S45 S52 S54
API Gateways S45 S54 S59
DDD (Domain Driven Design) / Bounded
Context

 S54 S56 S58

Independently deliverable (micro)services S51 S54 S60
Monitorning of (micro)services S45 S54 S60
Verzioning of (micro)services S58 S59 S60

Source: Authors

28 Dragičević et al. Agile architecture in the digital era – trends and practices

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

However, the spread of microservices also
increases the complexity of ecosystems (Taibi et
al., 2017), so more work is needed on tool
development and system-level design. In this
regard, serverless computing is a new trend that
aims to provide infrastructure for deployment and
scaling services that are hidden from the
developer (Pautasso et al., 2017b).

3.1. Agile architecture practices in the digital
era
The results of the analysis of the selected
publications are presented in order to get the
answer is the question of RQ2: What are the
practices of developing and implementing Agile
architecture in a modern digital environment?

A total set of 40 practices have been identified,
which are associated with at least three different
sources (Table 5).

It can be noted that in the digital era there are
many practices of agile architecture that are
available for developing complex software
systems in a modern development and production
environment, and whose application depends on
the particular context.

4. Discussion
In this section, the general considerations will first
be discussed, and then the answers to the research
questions. After that, the conducted research will
be compared with other similar researches, the
identified contradictory attitudes will be
considered, as well as the possibilities for further
research and the limitations of the conducted
research.

General considerations: Out of 61 selected
primary studies, 18 (30%) is from the period
2001-2010, 20 (33%) from the period 2011-2014
and 23 (37%) from the period 2015-2017, which
is designated as a digital era. Out of the total, 32
(52%) studies were published in the magazine, 23
(38%) conference, 5 (8%) workshop and 1 (2%)
as a whitepaper. The average grade of the selected
primary studies is 8.4 on a scale of 10. Empirical
studies are the most numerous and make up 22
(36%), followed by studies based on the experts’
experience 21 (34%) and finally the experts’
opinion 18 (30%).

Answers to research questions: The 10 key
challenges of agile architecture in the digital era
have been identified, where the most important
new challenge for the digital era is the application
of microservice architecture that follows the
challenges associated with new business models

of the digital economy. Very significant
challenges from the previous periods are:
balancing agility and architecture, organization,
communication and coordination, as well as the
challenges of scaling. In addition, the following
challenges are identified as important:
interdependence of components, documentation of
architecture, preservation of conceptual integrity
and consistency of architecture, interdependence
of requirements, and product lifecycle
management (process optimization and value
stream).

There should be noted that the old challenges
remain with the emergence of new ones. In the
coming period, a growing trend can be expected
for the challenges brought about by the
interdependence of components, due to the ever-
increasing complexity in the conditions of the
scaled, distributed environment, as well as the
challenges that will bring new business models of
the digital economy into future intelligent-
connected systems (Woods, 2016).

The 10 key success factors of agile
architecture in the digital era have been identified,
of which the most important are: application of
continuous practices, evolutionary approach,
application of tools and technologies in a
combined ecosystem, continuous focus and
quality attributes prioritization, understanding of
the role, responsibilities and competencies of the
architect. Following success factors are identified
as important, too: decomposition and granularity,
understanding of the context and choice of the
implementation strategy, use of architectural
styles, design patterns and components,
application of lean principles and practices, and
traditionalization of the agile approach.

The growing trend of almost all of the
identified success factors, especially the
importance of tools and technologies in the
combined ecosystem, as well as the application of
continuous practices, including continuous
architecting, is also evident. That can be
interpreted as achieving a certain level of maturity
of the agile approach traditionalization process,
which shows a downward trend.

The 40 practices of agile architecture in the
digital era have been identified, which have been
referenced in at least three primary studies.

The most relevant current practices identified
in the period (2001 - 2017) are: TDD/testing/
automated testing, prototype/experimentation
(spikes), Lean thinking and incremental delivery.

The most significant new practices identified

Dragičević et al. Agile architecture in the digital era – trends and practices 29

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

in the period (2011 - 2017) are: DevOps,
Continuous Delivery, Cloud computing and the
Minimum Viable Product (MVP)/Lean Start-Up.

The most significant new practices identified
in the period (2015-2017) are: Use of
microservices/SOA, Cloud-based services (IaaS,
PaaS, SaaS/FaaS, Serverless), RESTFull
API/HTTP, Containerization, API Gateways,
DDD (Domain Driven Design)/Bounded Context,
independently delivered (micro) services,
monitoring (micro) services and versioning
(micro) services. It is interesting that two studies
identify the need for machine learning, i.e.
artificial intelligence (AI) because AI increasingly
affects the labor market (Vochozka, Kliestik,
Kliestikova & Sion, 2018) and contributes to the
expansion of digitally mediated labor in a
platform-based economy (Mitea, 2018).

Such a large number of identified challenges,
success factors and practices indicate that there is
no one solution applicable to each problem. It is
necessary to transform, combine and balance
different approaches, methods, principles,
practices, tools, and technologies in order to give
better answers to the challenges that bring a
specific context.

Comparison with other similar research:
According to available information, there is no
SLR that deals with the trends and practices of
agile architecture in the digital era. There is a SLR
that deals with a similar or related topic (Dikert,
Paasivaara & Lassenius, 2016), which explores
the challenges and success factors of
organizations' transformation in the adoption of an
agile and lean process of software development in
scaling conditions, citing 35 challenges in 9
categories, and 29 success factors, of which the
most important is management support, choosing
and customizing the agile model, training and
coaching, mindset and alignment.

Also, there is a Systematic Mapping Study
(Yang, Liang & Avgeriou, 2016) that combines
architectural and agile methods including
architectural activities and approaches, agile
methods and practices, cost, benefits, challenges,
success factors, tools, and lessons learned. The
main difference is that the above research focuses
on the software development phase, while the
realized SLR in this paper focuses on all stages of
the life cycle of the product: development,
operation and production, i.e. a complete
development and production environment, bearing
in mind that the agile architecture, by the

emergence of CD, has passed the boundaries of
the software development phase.

Opposite Attitudes: The development of
technology and tools is the main reason that a
modern hyper-agile, lean development process in
the combined ecosystem is possible at all;
therefore, O'Connor et al. (2017) raises the
question of whether this observation is in
opposition to the Agile Manifesto, i.e. the
principle of "Individuals and interaction, before
processes and tools".

Babar (2009) notes that the responsibility,
regarding the specification of the requests, is
shifted to the user. However, Mirakhorli &
Cleland-Huang (2013) claim that the time has
elapsed when the specification of the requests was
obtained from users, but it is necessary to be with
the user, understand how the system will be used,
put the minimum viable product into the user's
hands, and evolve into short iterations with
continuous measurement and learning.

Opportunities for further research: The
identified primary studies have been largely based
on the opinions and experience of the experts.
Therefore, for future research, case studies of
successful and unsuccessful implementation of
agile architecture in the digital era are proposed.
The development of large distributed software
systems is significantly different from the
development of small systems, whereby
experience in the development of large systems is
difficult to obtain, while learning programming on
the example of small systems can be problematic.
Therefore, future research could study in more
detail the problems of acquiring competencies for
successful implementation of agile architecture in
complex distributed systems.

There is a lack of methods and guidelines for
the implementation of agile architecture using
microservices in the development of complex
distributed systems, so future research could
address this problem. The design of complex
distributed software systems is inherently
demanding, so for the successful implementation
of agile architecture using microservices, SOA
principles and practices must be combined with
modern software development practices
(Zimmermann, 2016b), so it is necessary to
explore how to combine microservices and SOA
principles and practices in the context of hyper-
agile, lean development of complex software.

Research Limitations: In order to reduce the
risk of bias, more researchers are involved in the
development and evaluation of research protocols,

30 Dragičević et al. Agile architecture in the digital era – trends and practices

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

including the inclusion/exclusion criteria,
database queries and the selection of primary
studies. In order to reduce the risk of the
subjectivity of researchers in the selection
(coding), analysis and synthesis of data, the
Atlas.ti software tool is used, more researchers are
involved in evaluating the results of the research,
while traceability is enabled by reference to any
claims stated in relation to the results of the
research.

In order to reduce the risk of omitting essential
studies due to limitations regarding database
searches (selection of logical operators and query
keywords), the query is specifically adapted to
each database. In addition, snowballing was
applied, based on which relevant studies were
added. One should also bear in mind the risk of
the bias of the authors of the primary studies since
successful examples of the implementation of
agile architecture prevail.

Conclusions
The paper presents the results of a systematic
literature review related to the trends of
challenges and success factors, as well as the
practice of agile architecture in the digital era.

The 61 primary studies were selected and
analyzed in the period from 2001 to 2017, which
can be divided into three characteristic intervals:
Large-scale agile period (2001-2010), Continuous
Delivery/DevOps period (2011-2014) and
Microservices period (2015- 2017).

The key challenges of agile architecture in the
digital era are: the application of microservices,
balancing agility and architecture, the structuring
of organization, communication and coordination
in order to support context scaling, minimum
documentation and dealing with interdependency
of requirements and components, while
preserving the conceptual integrity and
consistency of architecture in conditions of
development of new business models of the
digital economy and permanent changes.

The digital era, along with the old challenges
of software development, including challenges in
the development of distributed systems, is
characterized by new challenges that arise with
the emergence and application of microservices,
both in terms of migration of monolithic
applications into microservices using agile
approach, as well as the development of
greenfield software solutions in a distributed and
scaled environment.

In response to challenges, the key success
factors of agile architecture in the digital era are:
understanding the context, choosing a strategy of
implementation (or combining them) and
choosing appropriate tools and technologies in a
combined ecosystem, in order to support the
application of an evolutionary approach,
continuous and lean principles and practices,
focusing on quality attributes and their
prioritization. In this sense, understanding the
role, responsibilities and competencies of the
architect is crucial, regardless of whether this role
is virtual (i.e. the responsibility of the team),
whereby the architect should be given a key
contribution in choosing the appropriate
architectural style, the design patterns and
components, the decomposition of the system to
the optimal level of granularity and the
application of the necessary architectural
practices.

The 40 old and new practices of agile
architecture in the digital era have been identified,
which should be combined depending on the
specific context in order to successfully overcome
the challenges of agile architecture. Two studies
also indicate the need for applying artificial
intelligence practices, specifically machine
learning.

It is an interesting finding that success factors
in the period 2015 - 2017 are essentially the same
as in previous periods, with the different
significance and influence of individual factors,
while new challenges of the digital era are
followed by new practices.

A large number of challenges, success factors
and available practices indicate that there is
neither solution applicable to each problem nor
the same solution can be repeated for the same
problem in a different context.

In the digital era, agile architecture will mark
microservices based on hyper-agile and lean
approach, combined with SOA principles and
practices, while the development of AI will bring
new challenges and practices related to future,
intelligently connected systems.

Future research should focus on agile
architecture in the development of complex
distributed systems, whereby more case studies
with successful and unsuccessful implementation
examples would be desirable. Research on the
problem of acquiring competencies for the
successful implementation of agile architecture in
complex distributed systems is needed, followed
by research that will propose methods and

Dragičević et al. Agile architecture in the digital era – trends and practices 31

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

guidelines for the implementation of agile
architecture using microservices, as well as
research on the possibilities of combining
microservices and SOA principles and practices in
the context of hyper-agile, lean development of
complex software, especially in the development
of complex distributed software systems.

Acknowledgements
This work was supported in part by the Provincial
Secretariat for Higher Education and Scientific
Research under the Grants 142-451-2477/2018-
02.SM

References
Abrahamsson, P., Babar, M. A. & Kruchten, P. (2010).

Agility and Architecture: Can They Coexists? IEEE
Software, 27(2), 16-22.
https://doi.org/10.1109/MS.2010.36

Ambler, S. W. (2002). Lessons in agility from internet-based
development. IEEE Software, 19(2), 66-73.
https://doi.org/10.1109/52.991334

Ambler, S. W. (2009). Scaling agile software development
through lean governance. In Proceedings of the 2009
ICSE Workshop on Software Development
Governance, SDG 2009 (pp. 1-2). IEEE.
https://doi.org/10.1109/SDG.2009.5071328

Babar, M. A. (2009). An exploratory study of architectural
practices and challenges in using agile software
development approaches. In 2009 Joint Working
IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture (pp. 81-
90). IEEE.
https://doi.org/10.1109/WICSA.2009.5290794

Bellomo, S., Ernst, N., Nord, R. & Kazman, R. (2014).
Toward design decisions to enable deployability:
Empirical study of three projects reaching for the
continuous delivery holy grail. In Proceedings - 44th
Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, DSN 2014 (pp.
702-707). IEEE.
https://doi.org/10.1109/DSN.2014.104

Bellomo, S., Gorton, I. & Kazman, R. (2015). Towards Agile
Architecture: Insights from 15 Years of ATAM Data.
IEEE Software, 32(5), 38-45.
https://doi.org/10.1109/MS.2015.35

Bellomo, S., Kruchten, P., Nord, R. L. & Ozkaya, I. (2014).
How to agilely architect an agile architecture. Cutter IT
Journal of Information Technology Management, 27(2),
12-17.

Bellomo, S., Nord, R. L. & Ozkaya, I. (2013). A study of
enabling factors for rapid fielding combined practices to
balance speed and stability. In 35th International
Conference on Software Engineering (ICSE) (pp. 982-
991). IEEE Press.
https://doi.org/10.21236/ADA591481

Blair, S., Watt, R. & Cull, T. (2010). Responsibility-driven
architecture. IEEE Software, 27(2), 26-32.
https://doi.org/10.1109/MS.2010.52

Booch, G. (2007). The Economics of Architecture-First.
IEEE Software, 24(5), 18-20.
https://doi.org/10.1109/MS.2007.146

Booch, G. (2010). An architectural oxymoron. IEEE
Software. 27(5), 96-96.
https://doi.org/10.1109/MS.2010.117

Britto, R., Šmite, D. & Damm, L. O. (2016). Software
Architects in Large-Scale Distributed Projects: An
Ericsson Case Study. IEEE Software, 33(6), 48-55.
https://doi.org/10.1109/MS.2016.146

Buschmann, F. (2012). A Week in the Life of an Architect.
IEEE Software, 29(3), 94-96.
https://doi.org/10.1109/MS.2012.55

Buschmann, F. & Henney, K. (2013). Architecture and
agility: Married, divorced, or just good friends? IEEE
Software, 30(2), 80-82.
https://doi.org/10.1109/MS.2013.25

Chen, L. (2015). Towards Architecting for Continuous
Delivery. In Proceedings - 12th Working IEEE/IFIP
Conference on Software Architecture (pp. 131-134).
IEEE.
https://doi.org/10.1109/WICSA.2015.23

Chen, L. & Babar, M. A. (2014). Towards an evidence-
based understanding of emergence of architecture
through continuous refactoring in agile software
development. In 2014 IEEE/IFIP Conference on
Software Architecture (pp. 195-204). IEEE.
https://doi.org/10.1109/WICSA.2014.45

Coplien, J. & Bjørnvig, G. (2010). Lean Architecture for
Agile Software Development. Cornwall, UK: John Wiley
& Sons.

Dikert, K., Paasivaara, M. & Lassenius, C. (2016).
Challenges and success factors for large-scale agile
transformations: A systematic literature review. Journal
of Systems and Software, 119, 87-108.
https://doi.org/10.1016/j.jss.2016.06.013

Durdik, Z. (2011). Towards a process for architectural
modelling in agile software development. In
Proceedings of the joint ACM SIGSOFT conference--
QoSA and ACM SIGSOFT symposium--ISARCS on
Quality of software architectures--QoSA and
architecting critical systems--ISARCS (pp. 183-192).
ACM.
https://doi.org/10.1145/2000259.2000291

Dybå, T. & Dingsøyr, T. (2008). Empirical studies of agile
software development: A systematic review. Information
and software technology, 50(9-10), 833-859.
https://doi.org/10.1016/j.infsof.2008.01.006

Eckstein, J. (2014). Architecture in large scale agile
development. In International Conference on Agile
Software Development (pp. 21-29). Springer, Cham.
https://doi.org/10.1007/978-3-319-14358-3_3

Erder, M. & Pureur, P. (2015). Continuous Architecture:
Sustainable Architecture in an Agile and Cloud-Centric
World. Burlington, US: Morgan Kaufman.

Erder, M. & Pureur, P. (2016). What’s the Architect’s Role in
an Agile, Cloud-Centric World? IEEE Software, 33(5),
30-33.
https://doi.org/10.1109/MS.2016.119

Erdogmus, H. (2009). Architecture meets agility. IEEE
Software, 26(5), 2-4.
https://doi.org/10.1109/MS.2009.121

Faber, R. (2010). Architects as service providers. IEEE
Software, 27(2), 33-40.
https://doi.org/10.1109/MS.2010.37

Falessi, D., Cantone, G., Sarcia, S. A., Calavaro, G.,
Subiaco, P., & D'Amore, C. (2010). Peaceful
coexistence: Agile developer perspectives on software
architecture. IEEE Software, 27(2), 23-25.
https://doi.org/10.1109/MS.2010.49

32 Dragičević et al. Agile architecture in the digital era – trends and practices

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

Fontdevila, D. & Salias, M. (2013). Software Architecture in
the Agile Life Cycle. The Advances in Computer
Science : an International Journal (ACSIJ), 2(1), 48-52.

Ford, N., Parsons, R. & Kua, P. (2017). Building
Evolutionary Architectures - Support Constant Change,
Sebastopol, US: O'Reilly Media, Inc.

Fowler, M. & Lewis, J. (2014). Microservices. Retrieved
January 17, 2018 from:
https://martinfowler.com/articles/microservices.html

Gartner (2014). Gartner Says in the Digital World CIOs
Need Bimodal IT: Rock Solid IT with Ability for Fluidity.
Retrieved January 17, 2018 from:
https://www.gartner.com/en/newsroom/press-
releases/2014-10-06-gartner-says-in-the-digital-world-
cios-need-bimodal-it-rock-solid-it-with-ability-for-fluidity

Gerdes, S., Jasser, S., Riebisch, M., Schröder, S., Soliman,
M., & Stehle, T. (2016). Towards the essentials of
architecture documentation for avoiding architecture
erosion. In Proccedings of the 10th European
Conference on Software Architecture Workshops (p. 8).
ACM.
https://doi.org/10.1145/2993412.3004844

Hadar, I. & Sherman, S. (2012). Agile vs. plan-driven
perceptions of software architecture. In 2012 5th
International Workshop on Co-operative and Human
Aspects of Software Engineering (CHASE) (pp. 50-55).
IEEE.
https://doi.org/10.1109/CHASE.2012.6223022

Harper, K. E. & Dagnino, A. (2014). Agile Software
Architecture in Advanced Data Analytics. In 2014
IEEE/IFIP Conference on Software Architecture (pp.
243-246). IEEE.
https://doi.org/10.1109/WICSA.2014.16

Hayata, T., Han, J. & Beheshti, M. (2012). Facilitating agile
software development with lean architecture in the DCI
paradigm. In 2012 Ninth International Conference on
Information Technology-New Generations (pp. 343-
348). IEEE.
https://doi.org/10.1109/ITNG.2012.157

Hohpe, G., Ozkaya, I., Zdun, U. & Zimmermann, O. (2016).
The Software Architect’s Role in the Digital Age. IEEE
Software, 33(6), 30-39.
https://doi.org/10.1109/MS.2016.137

Holmes, B. & Nicolaescu, A. (2017). Continuous
Architecting: Just another buzzword? Full-scale
Software Engineering/The Art of Software Testing, 1-6.

Isham, M. (2008). Agile architecture IS possible - You first
have to believe! In Agile 2008 Conference (pp. 484-
489). IEEE.
https://doi.org/10.1109/Agile.2008.16

Jalali, S., & Wohlin, C. (2012). Systematic literature studies:
Database searches vs. backward snowballing.
In Proceedings of the 2012 ACM-IEEE International
Symposium on Empirical Software Engineering and
Measurement (pp. 29-38). IEEE.
https://doi.org/10.1145/2372251.2372257

Kitchenham, B. (2004). Procedures for Performing
Systematic Reviews. Keele, UK, Keele
University, 33(2004), 1-26.

Kitchenham, B. (2007). Guidelines for performing
Systematic Literature Reviews in Software Engineering.
EBSE Technical Report EBSE-2007-01, Keele
University.

Kruchten, P. (2010). Software Architecture and Agile
Software Development—A Clash of Two Cultures?
In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering-Volume 2 (pp.

497-498). ACM.
https://doi.org/10.1145/1810295.1810448

Kruchten, P. (2013). Agile architecture. Retrieved January
17, 2018 from:
https://philippe.kruchten.com/2013/12/11/agile-
architecture

Leffingwell, D., Martens, R. & Zamora, M. (2008). Principles
of Agile Architecture. Leffingwell, LLC. & Rally Software
Development Corp.

Madison, J. (2010). Agile-Architecture Interactions. IEEE
Software, 41-48.
https://doi.org/10.1109/MS.2010.35

Madni, A. M. (2008). Agile Systems Architecting (ASA):
Placing Agility Where it Counts. Conference on
Systems Engineering Research (CSER) (pp. 1-7).

Martini, A. & Bosch, J. (2016). A multiple case study of
continuous architecting in large agile companies:
current gaps and the CAFFEA framework. In 2016 13th
Working IEEE/IFIP Conference on Software
Architecture (WICSA)(pp. 1-10). IEEE.
https://doi.org/10.1109/WICSA.2016.31

Matković, P., Tumbas, P. & Sakal, M. (2011). The RSX
model: traditionalisation of agility. Strategic
Management, 16(2), 74-83.

Mirakhorli, M. & Cleland-Huang, J. (2013). Traversing the
twin peaks. IEEE Software, 30(2), 30-36.
https://doi.org/10.1109/MS.2013.40

Mitea, D. R. E. (2018). The Expansion of Digitally Mediated
Labor: Platform-Based Economy, Technology-Driven
Shifts in Employment, and the Novel Modes of Service
Work. Journal of Self-Governance and Management
Economics 6(4), 7-13.

Miyachi, C. (2011). Agile software architecture. ACM
SIGSOFT Software Engineering Notes, 36(2), 1-3.
https://doi.org/10.1145/1943371.1943388

Moore, E. & Spens, J. (2008). Scaling agile: Finding your
agile tribe. Agile 2008 Conference (pp. 121-124). IEEE.
https://doi.org/10.1109/Agile.2008.43

Newman, S. (2015). Building Microservices. O’Reilly Media,
Inc.

Nord, R. L., Ozkaya, I. & Kruchten, P. (2014). Agile in
Distress: Architecture to the Rescue. In International
Conference on Agile Software Development (pp. 43-
57). Springer, Cham.
https://doi.org/10.1007/978-3-319-14358-3_5

Nord, R. L., Ozkaya, I. & Sangwan, R. S. (2012). Making
architecture visible to improve flow management in lean
software development. IEEE Software, 29(5), 33-39.
https://doi.org/10.1109/MS.2012.109

Nord, R. L. & Tomayko, J. E. (2006). Software architecture-
centric methods and agile development. IEEE Software,
23(2), 47-53.
https://doi.org/10.1109/MS.2006.54

O’Connor, R. V., Elger, P. & Clarke, P. M. (2017).
Continuous software engineering—A microservices
architecture perspective. Journal of Software: Evolution
and Process, 29(11), 1-12.
https://doi.org/10.1002/smr.1866

Ozkaya, I., Gagliardi, M. & Nord, R. L. (2013). Architecting
for large scale agile software development: A risk-
driven approach. CrossTalk, 26(3), 17-22.

Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J. &
Josuttis, N. (2017). Microservices in Practice, Part 1:
Reality Check and Service Design. IEEE Software,
34(1), 91-98.
https://doi.org/10.1109/MS.2017.24

Dragičević et al. Agile architecture in the digital era – trends and practices 33

STRATEGIC MANAGEMENT, Vol. 24 (2019), No. 2, pp. 012-033

Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J. &
Josuttis, N. (2017). Microservices in Practice, Part 2:
Service Integration and Sustainability. IEEE Software,
34(2), 97-104.
https://doi.org/10.1109/MS.2017.56

Poort, E. (2014). Driving agile architecting with cost and
risk. IEEE Software, 31(5), 20-23.
https://doi.org/10.1109/MS.2014.111

Poort, E. (2016). Just Enough Anticipation: Architect Your
Time Dimension. IEEE Software, 33(6), 11-15.
https://doi.org/10.1109/MS.2016.134

Poppendieck, M. & Cusumano, M. A. (2012). Lean software
development: A tutorial. IEEE Software, 29(5), 26-32.
https://doi.org/10.1109/MS.2012.107

Power, K. & Conboy, K. (2015). A Metric-Based Approach
to Managing Architecture-Related Impediments in
Product Development Flow: An Industry Case Study
from Cisco. In Proceedings of the second international
workshop on software architecture and metrics (pp. 15-
21). IEEE Press.
https://doi.org/10.1109/SAM.2015.10

Prause, C. R. & Durdik, Z. (2012). Architectural design and
documentation: Waste in agile development? In 2012
International Conference on Software and System
Process (ICSSP) (pp. 130-134). IEEE.
https://doi.org/10.1109/ICSSP.2012.6225956

Ramakrishnan, S. (2010). On Integrating Architecture
Design into Engineering Agile Software Systems Agile
Methods in Practice - Combination of Techniques within
an Agile Method. Issues in Informing Science and
Information Technology, 7, 9-25.
https://doi.org/10.28945/1229

Richardson, C. & Smith, F. (2016). Microservices: From
Design to Deployment. Retrieved January 17, 2018
from: https://www.nginx.com/blog/microservices-from-
design-to-deployment-ebook-nginx/

Shadija, D., Rezai, M. & Hill, R. (2017). Microservices:
Granularity vs. Performance. In Companion
Proceedings of the10th International Conference on
Utility and Cloud Computing (pp. 215-220). ACM.
https://doi.org/10.1145/3147234.3148093

Taibi, D., Lenarduzzi, V., Pahl, C. & Janes, A. (2017).
Microservices in agile software development: a
workshop-based study into issues, advantages, and
disadvantages. In Proceedings of the XP2017 Scientific
Workshops (p. 23). ACM.
https://doi.org/10.1145/3120459.3120483

Tumyrkin, R., Mazzara, M., Kassab, M., Succi, G. & Lee, J.
Y. (2016). Quality attributes in practice: Contemporary
data. In Agent and Multi-Agent Systems: Technology
and Applications (pp. 281-290). Springer, Cham.
https://doi.org/10.1007/978-3-319-39883-9_23

Villamizar, M., Garcés, O., Castro, H., Verano, M.,
Salamanca, L., Casallas, R., & Gil, S (2015). Evaluating
the Monolithic and the Microservice Architecture Pattern
to Deploy Web Applications in the Cloud. In 2015 10th
Computing Colombian Conference (10CCC) (pp. 583-
590). IEEE.
https://doi.org/10.1109/ColumbianCC.2015.7333476

Vochozka, M., Kliestik, T., Kliestikova, J. & Sion, G. (2018).
Participating in a Highly Automated Society: How
Artificial Intelligence Disrupts the Job Market.
Economics, Management, and Financial Markets 13(4),
57-62.

Waterman, M., Noble, J. & Allan, G. (2012). How much
architecture? Reducing the up-front effort. In 2012 Agile
India (pp. 56-59). IEEE.
https://doi.org/10.1109/AgileIndia.2012.11

Waterman, M., Noble, J. & Allan, G. (2015). How much up-
front? A grounded theory of agile architecture.
In Proceedings of the 37th International Conference on
Software Engineering-Volume 1 (pp. 347-357). IEEE
Press. https://doi.org/10.1109/ICSE.2015.54

Webster, J. & Watson, R. T. (2002). Analyzing the Past to
Prepare for the Future: Writing a Literature Review. MIS
Quarterly, 26(2), Xiii-Xxiii.

WEF & Accenture (2017). Digital Transformation Initiative.
Retrieved March 12, 2018 from:
https://www.accenture.com/t20170116T084450__w__/u
s-en/_acnmedia/Accenture/Conversion-
Assets/WEF/PDF/Accenture-DTI-executive-
summary.pdf

Woods, E. (2015). Aligning Architecture Work with Agile
Teams. IEEE Software, 32(5), 24-26.
https://doi.org/10.1109/MS.2015.119

Woods, E. (2016). Software Architecture in a Changing
World. IEEE Software, 33(6), 94-97.
https://doi.org/10.1109/MS.2016.149

Yang, C., Liang, P. & Avgeriou, P. (2016). A systematic
mapping study on the combination of software
architecture and agile development. Journal of Systems
and Software, 111, 157-184.
https://doi.org/10.1016/j.jss.2015.09.028

Zimmermann, O. (2016). Designed and delivered today,
eroded tomorrow? In Proccedings of the 10th European
Conference on Software Architecture Workshops (p. 7).
ACM.
https://doi.org/10.1145/2993412.3014339

Zimmermann, O. (2016). Microservices tenets: Agile
approach to service development and deployment.
Computer Science - Research and Development, 32(3-
4), 301-310.
https://doi.org/10.1007/s00450-016-0337-0

 Correspondence

Zoran Dragičević

Company Boksit
Trg rudara 1, 75446, Milići,
Republic of Srpska, Bosnia and Herzegovina

E-mail: zoran.dragicevic021@gmail.com

