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Abstract 
Background: City logistics is a critical component of urban economic development, as it optimizes supply 
chains, enhances customer satisfaction through reliable deliveries, and minimizes environmental impacts in 
densely populated areas. This field addresses various challenges, including traffic congestion, environmental 
concerns, noise pollution, and the crucial need for timely deliveries. Routing and scheduling are central to 
logistics operations, with modern software integrating time windows to meet precise scheduling demands driven 
by detailed customer requirements and operational efficiencies. Furthermore, advanced vehicle routing models 
now effectively simulate real-world factors such as traffic congestion, stochastic travel times, and dynamic 
product demands. 
Purpose: This paper aims to develop an algorithm that addresses the routing decisions. Our approach extends 
to the time dimension, considering travel times and customer service times within predefined time windows. 
Study design/methodology/approach: The proposed algorithm is structured to execute in iterative phases, 
aiming to optimize key logistical objectives. In order to generate competitive solutions, we seek to minimize the 
number of vehicles utilized and overall travel costs. The evaluation of solution space was conducted via 
Simulated Annealing. 
Findings/conclusions: The performance of the proposed algorithm, evaluated using the Gehring and 
Homberger benchmark instances for 200 customers, demonstrates its effectiveness. The algorithm successfully 
meets the target number of vehicles required, and the associated travel costs are on average within 1% of the 
best solutions reported in the relevant literature. 
Limitations/future research: Given the ongoing need for timely solutions from decision-makers, future 
research endeavors will focus on enhancing the computational efficiency of the algorithm. Additionally, 
incorporating more time-related features, such as stochastic travel times, could further improve the algorithm's 
real-time applicability. 
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Introduction 
City logistics plays an important role in sustaining 
urban economies by optimizing supply chain 
efficiency, improving customer satisfaction 
through dependable delivery services, and 
mitigating the environmental repercussions of 
freight transportation in densely populated areas. 
This field encompasses the management of 
challenges like traffic congestion, spatial 
constraints on roads, environmental impacts, noise 
pollution, and the critical requirement for punctual 
deliveries. Among the crucial models considered in 
applications and research is multi-echelon vehicle 
routing. 

The Vehicle Routing Problem (VRP) 
representing a critical logistical challenge is 
extensively studied in Operations Research. 
Originating in 1959 with Dantzig and Ramser's 
formulation of the Truck Dispatching Problem, it 
aimed to minimize travel distances for a 
homogeneous fleet delivering to gas stations from 
a central depot. This seminal work laid the 
groundwork for subsequent research into 
optimizing delivery routes. In 1964, Clarke and 
Wright expanded on this concept by formulating a 
generalized linear optimization problem. This 
advancement enabled the efficient distribution of 
goods from a central depot to geographically 
dispersed consumers using vehicles with varying 
capacities. Known today as the VRP, this problem 
has become fundamental in logistics and 
transportation research, guiding strategies to 
minimize costs and improve efficiency in 
delivering goods to diverse locations. 

Since its inception, the VRP has evolved to 
handle complexities like varying vehicle 
capacities, strict time constraints, multiple depots, 
and other practical challenges in logistics. Route 
optimization is crucial in transportation, logistics, 
and supply chain management, serving sectors 
such as public transit, postal services, food 
delivery, cash logistics, and waste management. 
Designing efficient transport routes involves 
considering factors like vehicle characteristics, 
capacities, travel costs, service time windows, and 
other variables. These elements determine the 
feasibility and effectiveness of tailored route plans 
for specific operational needs. 

Reducing the number of vehicles and travel 
distance is key to cutting vehicle costs, lowering 

product prices, and reducing greenhouse gas 
emissions. Various real-world routing problems 
aim to minimize total logistics expenses while 
maintaining high service levels. Transportation 
costs are a significant part of product expenses, 
split into fixed (like driver wages and vehicle 
maintenance) and variable costs (like fuel 
expenses, which depend on route duration and 
specific factors). Efficient vehicle routing not only 
improves economic efficiency but also promotes 
environmental sustainability by minimizing 
emissions and operational impacts. 

Lenstra and Rinnooy Kan proved in 1981 that 
the VRP is NP-hard, indicating that exact 
algorithms are efficient only for small-scale 
instances. Therefore, heuristic and metaheuristic 
algorithms are more suitable for solving real-world 
problems of significant size. Modern approaches in 
VRP algorithms emphasize both exact and 
approximate solutions. Exact algorithms are 
constrained to smaller problems due to the 
problem's complexity. In contrast, approximate 
algorithms offer quick but not necessarily optimal 
solutions, and are a primary focus of algorithmic 
research. Metaheuristics like simulated annealing, 
tabu search, ant colony optimization, genetic 
algorithms, and memetic algorithms are widely 
used for tackling VRP and related optimization 
challenges. 

Today's vehicle routing models have advanced 
significantly, integrating complex real-world 
factors such as stochastic travel times to simulate 
traffic congestion, time windows for precise 
product collection and delivery scheduling, and 
varying dynamic demands for products. Each of 
these enhancements introduces substantial 
intricacy into the optimization process. In 
contemporary vehicle routing models, routes are 
typically planned for specific time periods, often 
daily. This can translate into different operational 
scenarios: routes may be recalculated iteratively 
with updated data inputs, or a single route plan may 
repeat over an extended timeframe. The Vehicle 
Routing Problem with Time Windows (VRPTW) 
is a critical variant where each customer requires 
service within a designated time slot. For instance, 
some customers may specify deliveries only 
between 9 AM and 10 AM. The integration of time 
windows into modern logistics software has gained 
significant traction over the past decades, driven by 
increasingly detailed customer needs and 
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operational efficiencies. As logistics challenges 
continue to evolve, new variations and 
enhancements to routing algorithms and software 
solutions will undoubtedly remain at the forefront 
of research and development in city logistics and 
broader transportation management. 

Real-world logistics rely on precise algorithms 
within routing software to optimize delivery routes 
amidst complex constraints. For instance, in fast 
parcel delivery, algorithms ensure efficient routes, 
uniform delivery schedules, and minimal 
customer-driver interactions, boosting service 
quality and operational efficiency. Similar 
optimizations benefit diverse sectors like 
newspaper delivery, school bus routing, waste 
management, postal services, and security patrols, 
addressing challenges such as variable travel times 
and fluctuating demand. In today's competitive 
landscape, advanced routing systems are critical 
for meeting customer expectations and maintaining 
a strategic edge in logistics. 

The rest of the paper is organized as follows. 
Section 1 contains the overview of literature on 
VRP and related time variations. In Section 2 we 
give a problem description and mathematical 
model. Section 3 is devoted to presentation of the 
algorithm, followed by the results in Section 4. 

1. Related literature 
Literature on VRP and related variations is very 
rich. We will emphasize several papers related to 
time-constrained versions. For a more detailed 
overview, one can see for instance Bräysy and 
Gendreau (2005a and 2005b) or 
Konstantakopoulos et al. (2022). 

Solomon's (1985) paper addresses vehicle 
routing and scheduling problems with time 
window constraints by developing and analyzing 
tour-building algorithms for the VRPTW. He 
extends existing VRP heuristics to integrate both 
distance and time dimensions into the heuristic 
process, resulting in more adaptable methods 
capable of handling time window constraints. 
Initially, he adapted Clarke and Wright (1964) 
savings heuristic for the VRPTW to enhance route 
optimization effectiveness. Additionally, Solomon 
explores sequential tour-building algorithms and 
insertion heuristics that initialize routes based on 
various criteria. These methods iteratively insert 
customers into partial routes, optimizing tour 
efficiency within specified time constraints. Li and 
Wang's study (2025) addresses the capacitated 
vehicle routing problem in the context of 
omnichannel retailing, accounting for multiple 

types of time windows and products 
simultaneously. 

Exact methods often exhibit considerable 
inefficiencies, sometimes taking days or more to 
find even moderately satisfactory, let alone 
optimal, solutions for relatively small problem 
instances. A comprehensive analysis of well-
known exact algorithms for VRP can be found in 
Laporte (1992). Fisher et al. (1997) introduce an 
algorithm that solves the VRPTW optimally, 
formulating the problem as a K-tree with a degree 
of 2K at the depot. Kohl and Madsen (1997) 
present a shortest path approach with side 
constraints, followed by Lagrange relaxation. This 
method relaxes constraints to ensure each customer 
is served exactly once. Desrosiers et al. (1984) 
pioneer the use of the column generation approach 
for solving VRPTW, and a more effective version 
incorporating valid inequalities achieves 
optimality in Desrosiers et al. (1992). The dynamic 
programming approach for VRPTW is first 
presented by Kolen et al. (1987), while 
Christofides and Beasley (1984) utilize the 
dynamic programming paradigm to solve the VRP. 
Hoogeboom et al. (2020) propose an exact 
polynomial-time algorithm that can efficiently 
identify the optimal start time for serving each 
customer in the vehicle routing problem with 
multiple time windows. 

Mathematical formulations for the cumulative 
vehicle routing problem with soft and hard time 
window constraints were presented by Fernández 
Gil et al. (2023). Their approach integrates CO2 
emissions into routing decisions, achieving a 
balance between environmental impact and time 
window compliance. Ulmer et al. (2024) 
demonstrate how companies can provide reliable, 
narrow time windows despite arrival time 
uncertainty by decoupling time window decisions 
from routing. Assuming specific arrival time 
distributions, they reduce a complex stochastic 
optimization problem to a one-dimensional root-
finding task, enabling a practical heuristic for 
broader applications. Köhler et al. (2020) propose 
customer acceptance mechanisms for flexible time 
window management in attended home deliveries. 
Through a computational study using demand 
scenarios, including real data from a German 
online supermarket, they assess the approaches’ 
effectiveness in offering short time windows while 
serving many customers. 

Metaheuristic algorithms can be seen as 
versatile strategies applicable across diverse 
problem domains, offering iterative guidance and 
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adjustment of subordinate heuristics. These 
methods intelligently blend various techniques to 
explore and exploit solution spaces, adapting 
heuristics to specific challenges. At each iteration, 
metaheuristics can manipulate either a single 
complete or incomplete solution, or a collection of 
solutions. Typical representatives of these 
algorithms are simulated annealing, tabu search, 
genetic algorithms, Variable Neighborhood Search 
(VNS) and Greedy Randomized Adaptive Search 
Procedure (GRASP). Simulated annealing is a 
robust optimization technique utilized across 
various problem domains. It draws inspiration 
from thermodynamics, specifically the gradual 
cooling process akin to metal cooling. This 
approach mimics the transformation of liquid metal 
into a crystal through slower cooling, symbolizing 
the exploration of the solution space from 
feasibility to discovering global optima. The 
seminal works by Kirkpatrick et al. (1983) and 
Černý (1985) introduced simulated annealing as a 
powerful algorithm for addressing challenging 
optimization problems. Notably, both studies 
applied simulated annealing to tackle the Traveling 
Salesman Problem in combinatorial optimization. 

In 1995, Kontoravdis and Bard introduced a 
greedy randomized adaptive search procedure 
(GRASP) for solving the Vehicle Routing Problem 
with Time Windows (VRPTW). The approach 
minimizes the number of vehicles used and the 
total distance traveled. Lau et al. (2003) present a 
tabu search approach for the m-VRPTW, where a 
limited number of vehicles is given. The method 
uses a holding list, forces dense packing within 
routes, and allows time window relaxation through 
penalties. Computational results show competitive 
solutions for VRPTW and near-optimal results for 
m-VRPTW. Baños et al. (2013) proposed a 
multiobjective approach using simulated annealing 
and multiple-temperature Pareto simulated 
annealing to tackle the VRPTW, incorporating 
travel distance and route balance considerations.  
Adewumi and Adeleke (2018) review four most-
addressed vehicle routing problem variations: 
capacitated, time windows, periodic, and dynamic, 
and examine their formulations, solution methods, 
and applications. A multi-objective approach 
combined with genetic algorithms is used by 
Ombuki and Hanshar (2006). The authors applied 
a multi-objective genetic algorithm to solve the 
VRPTW, optimizing both the number of vehicles 
and total cost without the need for predetermined 
weights. Their method produced competitive 
solutions compared to existing approaches and 

found new solutions that were not biased towards 
either the number of vehicles or cost. Schneider 
(2016) introduced a tailored tabu search algorithm 
for VRP with time windows, accommodating 
driver-specific familiarity with customers. Wang et 
al. (2015) focused on the Heterogeneous Multi-
type Fleet Vehicle Routing Problem with time 
windows and incompatible loading constraints, 
developing heuristic and tabu search methods. In 
2019, Marinakis et al. introduced a Multi-Adaptive 
Particle Swarm Optimization (MAPSO) algorithm 
to solve the VRPTW. The algorithm incorporates 
three adaptive strategies: using GRASP for initial 
solutions and iterations, an Adaptive 
Combinatorial Neighborhood Topology for 
particle movement, and dynamic parameter 
adaptation during execution. MAPSO was tested 
on benchmark instances and compared with other 
PSO versions and top algorithms, showing 
competitive performance in solving VRPTW 
instances with 100 to 1000 nodes. 

Furthermore, Gehring and Homberger (2011) 
presented a cooperative parallel strategy using two-
phase metaheuristics, combining evolutionary 
approaches to minimize vehicles followed by tabu 
search to optimize travel distance. Additionally, a 
cooperative parallel metaheuristic for VRPTW 
utilizes a solution warehouse strategy, facilitating 
the asynchronous exchange of best solution 
information among search threads (le Bouthillier 
and Crainic, 2005). Feng, Wei, and Hu (2023) 
proposed an Adaptive Large Neighborhood Search 
(ALNS) algorithm to solve the Vehicle Routing 
Problem with Multiple Time Windows 
(VRPMTW). This method uses an adaptive 
strategy to select neighborhoods and a local search 
based on destroy and repair operators to avoid local 
optima. Infeasible solutions are incorporated into 
the search, expanding the solution space, and an 
archive stores high-quality feasible solutions.  In 
the study by Wang et al. (2024), an adaptive large 
neighborhood search (ALNS) algorithm for the 
multi-depot dynamic vehicle routing problem with 
time windows (MD-DVRPTW), where customer 
requests emerge stochastically, is developed. The 
ALNS includes novel removal operators and a time 
window compatibility-based insertion method, 
proving effective for dynamic problems requiring 
fast re-optimization. The study also highlights that 
vehicle fixed costs affect route planning, and that 
speeding up responsiveness can increase costs 
rather than improve the solution. 

Agra et al. (2013) tackled the robust vehicle 
routing problem with time windows, focusing on 
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maritime transportation where delays are common. 
It presents two new formulations based on different 
robust approaches: one using adjustable robust 
optimization and another based on path 
inequalities. Both approaches incorporate 
techniques to reduce the complexity of uncertainty. 
Comparative results show that the new 
formulations are faster than previous methods, 
achieving similar solution times while addressing 
the uncertainty in travel times effectively. Hu et al. 
(2018) examined a more realistic variation of 
VRPTW that involves demand and travel time 
uncertainty. To tackle large instances, they 
designed a two-stage method based on a modified 
variable neighborhood search heuristic. In Jabali et 
al. (2012) the authors introduce a new variant of 
VRP that accounts for travel time, fuel, and CO2 
emissions. They incorporate CO2 emissions in 
routing decisions, relating CO2 to vehicle speed 
and fuel consumption, which changes during the 
day with respect to congestion. The conclusion is 
that it is important to control vehicle speed from a 
total cost point of view. Authors study the trade-off 
between minimizing CO2 emissions and 
minimizing total travel times. In his thesis, Souza 
(2024) introduces Flexi-VNS, a General Variable 
Neighborhood Search (GVNS) algorithm for 
solving three electric vehicle routing problems: 
EVRP, BSS-EV-LRP, and E-VRPTW. It employs 
a Randomized Variable Neighborhood Descent 
(RVND) method for local search and is shown to 
improve several best-known solutions. Flexi-VNS 
performs competitively, surpassing existing 
algorithms in multiple instances, including 
reducing battery swap stations and achieving high 
success rates. 

Cattaruzza et al. (2017) review urban vehicle 
routing challenges in goods distribution, analyzing 
logistics flows and highlighting key issues: time-
dependency, multi-level and multi-trip 
distribution, and dynamic information 
management. In Zhou et al. (2022), the authors 
investigate a novel variant of the two-echelon VRP 
incorporating time windows, pickup, and delivery, 
demonstrating its applicability in multimodal 
urban distribution, particularly for critical sectors 
such as medical supplies. The paper by Gutierrez 
et al. (2024) explores a two-echelon VRP 
incorporating time-dependent travel times to 
address urban traffic congestion. They employ a 
blend of soft and hard time windows to enhance 
customer service quality. The body of research on 
the Location-routing Problem is expanding. In 
their study, Mara et al. (2021) conducted a review 

of LRP literature, examining factors such as 
publication trends, problem characteristics, 
solution approaches, and application domains. A 
mixed-integer linear program was developed by 
Tian and Hu (2023) to minimize the distribution 
costs for a two-echelon location routing problem 
with recommended satellite facilities. A two-
echelon LRP model was developed by Chen et al. 
(2024) to minimize total costs for a perishable food 
distribution network, accounting for the different 
needs of in-store pickup and delivery customers. In 
Bala et al. (2017), the authors investigate 
synchronization between production times and 
customer time windows to optimize service levels 
effectively. The approach was tested for a 
newspaper delivery problem. Yildiz et al. (2023), 
integrate location decisions into a two-echelon 
VRP that includes pickup and delivery operations. 
They apply this approach to a two-echelon 
supermarket chain, demonstrating its suitability for 
addressing real-world logistics challenges 
effectively. Escobar-Varbas and Crainic (2024) 
tackle a two-echelon location routing incorporating 
time-dependent multicommodity origin-to-
destination demand, time windows, limited storage 
at intermediate facilities, and synchronization of 
fleets across echelons. This new problem, involves 
selecting facilities, routing vehicles, scheduling 
synchronized operations at intermediate sites, and 
allocating demands using time-sensitive routes. 

2. Problem formulation 
In this section we will introduce VRPTW in more 
details. Let 𝒞 = {1, … , 𝑛} be a set of customers 
and 𝑟௜ a request of a customer 𝑖 in 𝒞 , that has to be 
served within time window [𝑡௜௔, 𝑡௜ௗ] with a serving 
time 𝑡௜௦. The time dimension besides the customers 
is also associated with depot, so that 𝐷 has also 
defined window [𝑡஽ௗ, 𝑡஽௔]. Service is carried with a 
homogenous fleet 𝒱 of capacity 𝑄. Each vehicle 
leaving the depot, starts distribution in time 𝑡஽ௗ and 
returns before the closing time 𝑡஽௔. At customers, 
vehicle cannot start service before the start of time 
window 𝑡௜௔ and if arrives sonner than 𝑡௜௔ it has to 
wait. The arrival time at customer 𝑖 cannot be after 
the end time 𝑡௜ௗ. The serving time 𝑡௜௦ defines 
holding time at customer 𝑖. 

Let 𝐺 =  (𝑁, 𝐴) be an oriented graph defined 
on a set of vertices 𝑁 = {0, 1, … 𝑛, 𝑛 +  1} so that  
vertices 0 and 𝑛 +  1 represent depot, and 1, … 𝑛 is 
the customer set 𝒞. Arcs 𝐴 of the graph are  
generated by connections between customers 𝒞, 
while arcs with depot are modelled so that vertex 

O
N

LI
N

E 
FI

R
ST



 

 

8 Bala et al.        Designing Efficient Algorithms for Logistics Management: Optimizing Time-Constrained Vehicle Routing  

STRATEGIC MANAGEMENT, Vol. xx (20xx), No. x, pp. 0xx-0xx 

0 → {1, … , 𝑛} and represents leaving arcs from 
depot, while  {1, … , 𝑛} → 𝑛 + 1 and represents 
arcs entering the depot. For 𝑖 ∈ 𝑁, 𝑂௜ represents the 
outset 𝑂௜ = {𝑗 ∶  (𝑖, 𝑗) ∈  𝐴}, and 𝐼௜ is the inset 𝐼௜ ={𝑗 ∶  (𝑗, 𝑖) ∈ 𝐴}. 

In the presented model we have two types of 
variables: binary 𝑥௜௝௏  and continuous 𝜔௜௏. Binary 

variable is defined as 1 if a vehicle 𝑉 uses the arc (𝑖, 𝑗), and 0 otherwise. Continuous variable 𝜔௜௏ 
represents time, more precisely start of serving 
time at customer 𝑖 by a vehicle 𝑉. Time window 
associated with depot, that corresponds to vertices 0 and 𝑛 + 1, is ൣ𝑡଴ௗ, 𝑡଴௔൧ = ൣ𝑡௡ାଵௗ , 𝑡௡ାଵ௔ ൧ = [𝑡஽ௗ, 𝑡஽௔]. 

 𝑚𝑖𝑛 ቐ෍ ෍ 𝑥଴௝௏௝∈ை(଴)௏∈𝒱 , ෍ ෍ 𝑐௜௝ 𝑥௜௝௏(௜,௝)∈஺௏∈𝒱 ቑ  (1) 

෍ ෍ 𝑥௜௝௏௝∈ே௏∈𝒱 = 1 ∀𝑖 ∈ 𝑁\{0, 𝑛 + 1} (2) ෍ 𝑥଴௝௏௝∈ை(଴) ≤ 1 ∀𝑉 ∈ 𝒱 (3) ෍ 𝑥௜௝௏௝∈ை(௜) − ෍ 𝑥௝௜௏௝∈ூ(௜) = 0 ∀𝑉 ∈ 𝒱, 𝑖 ∈ 𝑁\{0, 𝑛 + 1} (4) ෍ 𝑥଴௝௏௝∈ை(଴) − ෍ 𝑥௝,௡ାଵ௏௝∈ூ(௡ାଵ) = 0 ∀𝑉 ∈ 𝒱 (5) 𝑥௜௝௏ (𝜔௜௏ + 𝑡௜௦ + 𝑡௜௝ − 𝜔௝௏) ≤ 0 ∀𝑉 ∈ 𝒱, (𝑖, 𝑗) ∈ 𝐴 (6) 𝑡௜௔ ෍ 𝑥௜௝௏௝∈ை(௜) ≤ 𝜔௜௏ − 𝑡௜ௗ ෍ 𝑥௜௝௏௝∈ை(௜)  ∀𝑉 ∈ 𝒱, 𝑖 ∈ 𝑁\{0, 𝑛 + 1} (7) 𝑡௜ௗ ≤ 𝜔௜௏ ≤ 𝑡௜௔ ∀𝑉 ∈ 𝒱, 𝑖 ∈ {0, 𝑛 + 1} (8) ෍ 𝑟௜ ෍ 𝑥௜௝௏௝∈ை(௜)௜∈ே{଴,௡ାଵ} ≤ 𝑄 ∀𝑉 ∈ 𝒱 (9) 𝑥௜௝௏ ∈ {0,1} ∀𝑉 ∈ 𝒱, (𝑖, 𝑗) ∈ 𝐴 (10) 𝜔௜௏ ≥ 0 ∀𝑉 ∈ 𝒱, 𝑖 ∈ 𝑁 (11) 

The objective function (1) contemplates two 
objectives: number of vehicles and travel costs. 
With (2) we assure that each customer is visited 
exactly once. Inequality (3) implies that each 
vehicle is used exactly once, and combined with (4) 
and (5) defines the route of vehicle 𝑉 ∈ 𝒱. With 
(6)-(8) and (9) we follow the time constraints and 
capacity constraint, respectively. For a vehicle 𝑉 ∈𝒱 (7) implies 𝜔௜௏ = 0 if customer 𝑖 is not served by 
a vehicle 𝑉. Finally, (10) and (11) are variable 
constraints. 

3. The algorithm 
In this section, we present an algorithm for 
VRPTW that runs in predefined time blocks. 
Within each block, our primary objective is to 
evaluate the total travel costs. However, some 
blocks are treated as “special”, where the algorithm 
randomly selects a route 𝑠 to focus on. Let 𝑚 be 
the number of customers on route 𝑠, and 𝑤 the 
cumulative quantity of all customers on 𝑠. 
Additional evaluation calculates the logarithm of 𝑚 and average of 𝑤. The evaluation function is 

structured to prioritize moving customers away 
from the route by the means of a logarithmic 
function. The average of quantities tends to keep 
customers with smaller requests. 

With appropriate term hierarchy, the algorithm 
will prioritize removing customers from the route 
first; if that's not possible, it will retain customers 
of smaller quantities who have a greater number of 
potential positions. If the number of customers 
reaches zero, and the running time for the block 
hasn't elapsed, the new route is chosen randomly. 
As the running time of the algorithm increases, we 
decrease the probability of declaring the special 
blocks, and gradually focus only on travel costs. 

Let 𝐹ଵ be the number of vehicles and 𝐹ଶ the 
travel costs. Then the integral form of the 
evaluation function can be written as: 𝐸(∙) = 𝛼 ∙𝐹ଵ + 𝛽 ∙ 𝐹ଶ + 𝛾 ∙ log (𝑚 + 1) + 𝛿 ௪௠ାଵ. If a block 
is not special, 𝛾 = 𝛿 = 0. Otherwise , 𝛿 > 0 . 

Exploration of the solution space is executed 
using the simulated annealing technique. As it is 
shown in several papers, for instance see Chiang 
and Russell (1996), Wang et al. (2015), Baños et 

O
N

LI
N

E 
FI

R
ST



 

 

Bala et al.        Designing Efficient Algorithms for Logistics Management: Optimizing Time-Constrained Vehicle Routing 9 

STRATEGIC MANAGEMENT, Vol. xx (20xx), No. xx, pp. 0xx-0xx 

al. (2013), Bala et al. (2024), this metaheuristic can 
return solutions of high quality. In the review by 
Konstantakopoulos et al. (2022) the method is 
emphasized as one of the approaches that can 
effectively overcome the algorithm being stuck in 
local optimum. In this research we decided to apply 
the simulated annealing because of its robustness 
and relatively easy manipulation of the evaluation 
function. Another feature that we apply is guiding 
the search through infeasibility regions. During the 
special blocks, we accept solutions with minor time 
window or vehicle capacity violations. The idea is 
simple: to overcome local minima.   

Generation of potential neighboring solutions is 
carried out via four transformations. To give a brief 
explanation, we will use the oriented graph 
described in a previous section. More 
comprehensive overview can be found in Bräysy 
and Gendreau (2005a).  

1. Move: choose vertex 𝑢 ∈ 𝑀 and 𝑣 ∈ {0} ∪𝑀, and move 𝑢 after 𝑣. See Figure 1. 
2. Swap: choose vertices 𝑢, 𝑣 ∈ 𝑀, and swap 

their positions. See Figure 2. 
3. 2-opt: choose vertices 𝑢, 𝑣 ∈ 𝑀 on the 

same route and change the direction in the 
sub-route that they define. See figure 3. 

4. Cross:  choose vertices 𝑢, 𝑣 ∈ 𝑀 on 
different routes and swap their remaining 
tails. See figure 4. 

The Figures 1 – 4 are graphical presentations of 
transformation 1 – 4, respectively. The square 
indicates Depot, the start and the end of the routes, 
while circles represent customers. Direction of 
routes are indicated with arrows.  
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Figure 1   Move transformation 
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Figure 2   Swap transformation 
Source: The authors 
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Figure 3   2-opt transformation 
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Figure 4   Cross transformation 
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4. Results 
This section contains the results of the proposed 
algorithm. We evaluated its performance using the 
Gehring and Homberger benchmark instances 
designed for 200 customers 
(https://www.sintef.no/projectweb/top/vrptw/200-
customers/). These test instances are extensions of 
the well-known Solomon test problems for 
VRPTW and follow the same topology 
differentiation: clustered (C), random (R), and 
mixture (RC), and time scheduling horizon: short 
(1) and long (2). Each class (topology, horizon) 
contains 10 instances, resulting in 60 test instances.  

For simulated annealing we define start and end 
temperatures of 20, and 0,5 respectively, with a 
cooling factor 0,999999. Each block lasts for 5 
seconds, and applying the cooling rule 𝑇 ≔ 𝑇 ∙0,999999 leads to the running time of the 
algorithm to being approximately 15 minutes (915 
seconds). 

For each problem instance, the algorithm is 
executed 10 times. In Table 1 we present a 
summary of the test results categorized by instance 
group. The first column denotes the problem 
group, followed by the deviation of the best-
solution (𝑏𝑠) found from the best known solution (𝑏𝑘𝑠). The deviation is calculated as (𝑏𝑠 − 𝑏𝑘𝑠) 𝑏𝑘𝑠⁄  and reported as percentage. Then 
we take the best among the whole group. The third 
column contains the average of deviations for each 
obtained solution after 10 runs. We report the 
average over the respective group. 

Motivated by practitioner evaluation of results, 
where the tradeoff between execution time and 
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solution quality, or commonly small improvements 
that the algorithm makes in the latest part of 
execution, we introduce the measure “class” for 
each solution. If the deviation from the best-known 
solution is less than (𝑝 + 1)%, we call the solution 
to be of class 𝑝. Average class for test results are 
given in the third column. 

 
Table 1   Summary of the results across problem groups 

Problem group 
Minimum 
(%) 

Average 
(%) 

Average 
class 

c1 0,0000 0,2256 0,1 
c2 0,0005 0,1747 0,1 
r1 0,0000 0,6244 0,2 
r2 0,0005 0,5697 0,1 
rc1 0,4579 2,3313 1,9 
rc2 0,0351 1,1484 0,7 
Total 0,0000 0,8457 0,5 

Source: The authors 

 
From the final row, we can see that our 

algorithm creates solutions that are on average 
0,8457% behind the best solutions reported in the  
literature. This average is calculated across 600 test 
cases. The algorithm matches the best solutions in 
23 tests, and in Table 2 we give a distribution of 
test cases among the classes. Specifically, 414 or 
69% of test cases are within 1% of the best-known 
solution. Moreover, in 572 or 95,33% of cases our 
results lag by no more than 3%, demonstrating the 
algorithm's consistency and robustness. 

 
Table 2   Class distribution 

Class Relative frequency (%)
1 69,00
2 18,83
3 7,50
4 2,83
5 1,17
6 0,33
7 0,33
Total 100,00

Source: Тhe authors 

 
Time consumption is presented in Table 3, with 

averages calculated within each respective group. 
The second column details the average time 
required to reach the minimum number of vehicles. 
In the third column, we report the average time 
taken to achieve the best solution for each test 
instance. Finally, the fourth column shows the 
average time required to attain the class for each 
test. 
 
 
 

Table 3   Time consumption 

Problem group 

Average 
time 
(vehicles) 

Average 
time  
(best) 

Average 
time  
(class) 

c1 26,3 650,8 449,7 
c2 18,0 750,9 506,2 
r1 21,1 692,3 547,4 
r2 24,5 737,1 560,4 
rc1 34,6 798,4 624,9 
rc2 34,4 822,9 641,7 
Total 26,5 742,1 555,0 

Source: The authors 

 
Note that although the algorithm reaches the 

minimum number of vehicles relatively quickly, it 
continues to periodically run in special blocks. 
That is not optimal behavior from a running time 
perspective. Furthermore, from Table 3, we can see 
that the algorithm spends on average an additional 
187 seconds in making small progress in 
transportation costs from its class to the best 
solution. There is potential to make further 
improvements in running time efficiency in this 
area. 

Conclusion 
In this paper, we address the Vehicle Routing 
Problem with Time Windows (VRPTW), a critical 
component of logistics models. We present an 
algorithm for VRPTW designed to operate in 
predefined time blocks. Within each block, our 
primary objective is to minimize travel costs. 
Additionally, in certain blocks, we focus on 
reducing the number of vehicles involved by 
randomly selecting routes and including the 
number of requests and their quantities as part of 
our evaluation strategy. In overcoming the local 
optimum, we let algorithm explore the infeasible 
regions, from time and capacity perspective. 

Our approach has demonstrated high quality 
solutions on Gehring and Homberger benchmark 
instances featuring 200 customers. Across all 
instances, we achieve the minimum number of 
vehicles reported in the literature. With travel costs 
averaging 0,8457% from the best-known solutions, 
we affirm the effectiveness of our algorithm. 

Given the integral role of VRPTW in logistics 
software, we analyze solutions also from a 
practical standpoint. Our approach emphasizes 
achieving reasonably good solutions within 
feasible time frames, categorizing solutions into 
performance classes. Specifically, 69% of test 
cases are within 1% of the best-known solution, 
and 95% are within 3%. 
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While our method excels in solution quality, 
time efficiency remains a challenge. We find that 
20% of execution time is spent on marginal 
improvements, indicating space for enhancing 
runtime efficiency. Future research will focus on 
refining our algorithm through advanced 
transformations, parallelization, and additional 
experimentation in evaluation functions to achieve 
faster execution times and further improve solution 
quality. 
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